
CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	1	of	36	

		

	1	

	2	

	3	

	4	

	5	

	6	

	7	

	8	

	9	
An	Evaluation	Activity	sponsored	by	the	DHS	Science	&	Technology	Directorate	10	

	11	

	12	

	13	

Concept,	Evaluation	Plan	and	API	14	

Version	0.5,	November	17,	2015	15	

	16	

	17	

Patrick	Grother	and	Mei	Ngan	18	

Contact	via	chexia-face@nist.gov		19	

	
	
	
	
	
	

	

	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	2	of	36	

		

Provisional	Timeline	of	the	CHEXIA-FACE	Evaluation	20	
Phase	0	
API	Development	

2015-10-26	 Draft	evaluation	plan	
2015-11-16	 Final	evaluation	plan	

Phase	1	
	

2015-12-15	 Participation	starts:		Algorithms	may	be	sent	to	NIST	
2016-01-20	 Last	day	for	submission	of	algorithms	to	Phase	1	
2016-02-22	 Interim	results	released	to	Phase	1	participants	

Phase	2	
	

2016-04-20	 Last	day	for	submission	of	algorithms	to	Phase	2	
2016-05-20	 Interim	results	released	to	Phase	2	participants	

Phase	3	
	

2016-07-27	 Last	day	for	submission	of	algorithms	to	Phase	3	
2016-Q4	 Release	of	final	public	report	

	21	

	22	

	23	

Notable	differences	from	FRVT	2012	24	

Anonymous	participation	is	allowed	–	but	see	section	1.8.	25	

Please	note	that	this	document	is	derived	from	the	FRVT	2012	API	document	for	continuity	and	to	aid	implementers	of	26	
the	CHEXIA-FACE	API.	27	

― This	evaluation	is	dedicated	solely	to	imagery	relevant	to	child	exploitation.		NIST	seeks	to	assist	developers	in	any	28	
way	possible	to	improve	algorithm	accuracy	on	this	task,	and	is	open	to	creative	ideas	on	how	to	do	so.			29	

― We	anticipate	running	the	algorithms	only	on	child	exploitation	imagery.	We	may	also	run	algorithms	on	other	30	
images	if	that	will	isolate	relevant	factors	that	will	influence	accuracy.		We	do	not	intend	to	run	the	algorithms	on	31	
cooperative	images	used	in	recent	FRVT	tests.	32	

― This	evaluation	drops	the	following:	33	

− Facial	age,	gender,	pose	conformance,	and	expression	estimation	for	still	images	(see	section	1.9)	34	

− The	class	F	evaluation	of	frontal	pose	rendering	algorithms	35	

― This	evaluation:	36	

− Merges	the	idea	of	“still”	and	“video”.		This	abstraction	supports	verification	and	identification	functions	37	
where	either	“sample”	may	be	a	still	or	video.		See	section	2.4.2.	38	

− Adds	a	face	detection	task	in	which	the	algorithm	reports	locations	of	faces	detected	in	images.	See	Section	39	
3.3.	40	

− Adds	a	clustering	task	in	which	the	algorithm	finds	and	groups	images	of	an	unknown	number	of	identities.	41	
See	section	3.4.	42	

− Employs	GPUs	on	some	NIST	machines.		43	

	44	

― The	header/source	files	for	the	API	will	be	made	available	to	implementers	at	http://nigos.nist.gov:8080/chexia-face.		45	

46	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	3	of	36	

		

Table	of	Contents	47	

1.	 CHEXIA-FACE	...	5	48	
1.1.	 Scope	..	5	49	
1.2.	 Audience	..	5	50	
1.3.	 Market	drivers	..	5	51	
1.4.	 Test	datasets	..	6	52	
1.5.	 Offline	testing	..	6	53	
1.6.	 Phased	testing	..	6	54	
1.7.	 Interim	reports	...	7	55	
1.8.	 Final	reports	...	7	56	
1.9.	 Application	scenarios	...	7	57	
1.10.	 Options	for	participation	..	8	58	
1.11.	 Number	and	schedule	of	submissions	...	8	59	
1.12.	 Core	accuracy	metrics	..	9	60	
1.13.	 Reporting	template	size	...	9	61	
1.14.	 Reporting	computational	efficiency	...	9	62	
1.15.	 Exploring	the	accuracy-speed	trade-space	..	9	63	
1.16.	 Hardware	specification	..	9	64	
1.17.	 Operating	system,	compilation,	and	linking	environment	...	10	65	
1.18.	 Software	and	Documentation	..	10	66	
1.19.	 Runtime	behavior	...	11	67	
1.20.	 Threaded	computations	...	12	68	
1.21.	 Time	limits	..	12	69	
1.22.	 Ground	truth	integrity	..	13	70	

2.	 Data	structures	supporting	the	API	...	13	71	
2.1.	 Namespace	...	13	72	
2.2.	 Overview	..	13	73	
2.3.	 Requirement	..	13	74	
2.4.	 File	formats	and	data	structures	..	13	75	
2.5.	 File	structures	for	enrolled	template	collection	...	18	76	

3.	 API	Specification	..	19	77	
3.1.	 1:1	Verification	...	19	78	
3.2.	 1:N	Identification	...	22	79	
3.3.	 Face	Detection	...	28	80	
3.4.	 Clustering	...	30	81	

4.	 References	..	32	82	
Annex	A	Submission	of	Implementations	to	the	CHEXIA-FACE	..	33	83	

A.1	 Submission	of	implementations	to	NIST	...	33	84	
A.2	 How	to	participate	..	33	85	
A.3	 Implementation	validation	...	34	86	

Annex	B	Effect	of	Age	on	Face	Identification	Accuracy	..	35	87	
	88	
List	of	Tables	89	

Table	1	–	Main	image	corpora	(others	may	be	used)	...	6	90	
Table	2	–	Subtests	supported	under	the	CHEXIA-FACE	activity	..	7	91	
Table	3	–	CHEXIA-FACE	classes	of	participation	..	8	92	
Table	4	–	Cumulative	total	number	of	algorithms,	by	class	..	8	93	
Table	5	–	Implementation	library	filename	convention	...	11	94	
Table	6	–	Number	of	threads	allowed	for	each	application	..	12	95	
Table	7	–	Processing	time	limits	in	milliseconds,	per	640	x	480	image	...	12	96	
Table	8	–	Structure	for	a	single	image	or	video	frame	..	14	97	
Table	9	–	Structure	for	a	set	of	images	or	video	frames	...	14	98	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	4	of	36	

		

Table	10	–	Labels	describing	categories	of	Multifaces	..	14	99	
Table	11	–	Structure	for	a	pair	of	eye	coordinates	...	15	100	
Table	12	–	PersonTrajectory	typedef	..	15	101	
Table	13	-	Class	for	representing	a	person	...	16	102	
Table	14	–	Structure	for	bounding	box	around	a	detected	face	...	16	103	
Table	15	–	Structure	for	a	single	hypothesized	cluster	membership	..	16	104	
Table	16	–	Structure	for	hypothesized	cluster	membership	for	face(s)	in	an	image	..	17	105	
Table	17	–	Structure	for	a	candidate	..	17	106	
Table	18	–	Enumeration	of	return	codes	..	17	107	
Table	19	–	ReturnStatus	structure	..	18	108	
Table	20	–	Enrollment	dataset	template	manifest	...	18	109	
Table	21	–	Functional	summary	of	the	1:1	application	...	19	110	
Table	22	–	Initialization	...	20	111	
Table	23	–	GPU	index	specification	...	20	112	
Table	24	–	Template	generation	...	21	113	
Table	25	–	Template	matching	...	21	114	
Table	26	–	Procedural	overview	of	the	identification	test	..	22	115	
Table	27	–	Enrollment	initialization	..	24	116	
Table	28	–	GPU	index	specification	...	24	117	
Table	29	–	Enrollment	feature	extraction	...	25	118	
Table	30	–	Enrollment	finalization	..	25	119	
Table	31	–	Identification	feature	extraction	initialization	...	26	120	
Table	32	–	Identification	feature	extraction	...	26	121	
Table	33	–	Identification	initialization	...	27	122	
Table	34	–	Identification	search	..	27	123	
Table	35	–	SDK	initialization	..	28	124	
Table	36	–	GPU	index	specification	...	28	125	
Table	37	–	Face	detection	...	29	126	
Table	38	–	SDK	initialization	..	30	127	
Table	39	–	GPU	index	specification	...	31	128	
Table	39	–	Clustering	..	31	129	
		130	

131	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	5	of	36	

		

1. CHEXIA-FACE	132	

1.1. Scope	133	

This	document	establishes	a	concept	of	operations	and	an	application	programming	interface	(API)	for	evaluation	of	face	134	
recognition	(FR)	implementations	submitted	to	NIST's	Child	Exploitation	Image	Analytics	Face	Recognition	Evaluation	135	
(CHEXIA-FACE).	136	

	

	

	137	

1.2. Audience	138	

Universities	and	commercial	entities	with	capabilities	in	any	of	the	following	areas	are	invited	to	participate	in	the	139	
CHEXIA-FACE	test.			140	

― Identity	verification	with	face	recognition	algorithms.	141	

― Large	scale	identification	implementations.	142	

― Face	detection	algorithms.	143	

― Implementations	with	an	ability	to	cluster	(find	and	group)	images	of	an	unknown	number	of	identities.	144	

Organizations	will	need	to	implement	the	API	defined	in	this	document.		Participation	is	open	worldwide.	There	is	no	145	
charge	for	participation.		While	NIST	intends	to	evaluate	technologies	that	could	be	readily	made	operational,	the	test	is	146	
also	open	to	experimental,	prototype	and	other	technologies.	147	

1.3. Market	drivers	148	

There	is	a	growing	market	around	digital	forensics	–	the	ability	to	extract	semantic	information	from	imagery	that	is	useful	149	
to	an	investigation.		This	test	specifically	is	intended	to	assess	the	efficacy	of	face	recognition	algorithms	on	child	150	
exploitation	imagery.		These	images	are	of	interest	to	NIST's	partner	law	enforcement	agencies	that	seek	to	employ	face	151	
recognition	in	investigating	this	area	of	serious	crime.		The	primary	applications	are	identification	of	previously	known	152	
victims	and	suspects,	detection	of	new	victims	and	suspects.	Given	a	collection	of	images,	produce	a	cluster	of	identities,	153	
from	which	(law	enforcement)	investigations	can	proceed.		154	

A	parallel	effort,	TRAIT	2016,	seeks	to	improve	the	capability	of	algorithms	to	recognize	text	in	unconstrained	images.		155	
Text	appears	frequently	in	child	exploitation	imagery.	See	http://www.nist.gov/itl/iad/ig/trait-2016.cfm	.	156	

	157	

Child	Exploitation	Image	Analytics	
(CHEXIA)	

1:1	
Verification	

1:N	
Identification	

API	and	Concept	of	Operations	are	defined	in	this	
document	

Clustering	Face	Detection	

Face	Recognition	
(CHEXIA-FACE)	

Text	Recognition	
(TRAIT-2016)	

See	
http://www.nist.gov/itl/iad/ig/trait-2016.cfm		

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	6	of	36	

		

1.4. Test	datasets	158	

NIST	anticipates	running	the	algorithms	only	on	child	exploitation	imagery.	NIST	may	also	run	algorithms	on	other	images	159	
if	that	will	isolate	factors	that	will	influence	accuracy.		NIST	does	not	intend	to	run	the	algorithms	on	cooperative	images	160	
used	in	recent	FRVT	tests.		The	data	has,	in	some	cases,	been	estimated	from	initial	small	partitions.	The	completion	of	161	
this	section	depends	on	further	work.		The	information	is	subject	to	change.	162	

Table	1	–	Main	image	corpora	(others	may	be	used)	163	

	 Child	exploitation	 TBD	

Collection,	environment	 Mostly	inside	a	home,	sometimes	outdoors	 	

Live	photo,	Paper	scan	 Live	 	

Documentation	 See	NOTE	below	 	

Compression	from	[MBE	2010]1	 Variable	 	

Maximum	image	size	 Some	from	contemporary	SLR	camera,	some	3000x4000	and	higher.	 	

Minimum	image	size		 240	x	240	 	

Eye	to	eye	distance	pixels	 20	to	1000	approximately	 	

Pose	 The	images	have	compound	roll,	pitch	and	yaw	rotations.	 	

Full	frontal	geometry	 Rarely	 	

Intended	use	 All	CHEXIA-FACE	tasks	 	

Age	 Many	below	10,	some	to	age	18.		Rarely	an	adult.	 	
	164	

NOTE	on	Child	exploitation	images:		These	images	are	illicit	pornographic	images	and	video.	The	images	are	present	on	165	
digital	media	seized	in	criminal	investigations.		The	files	include	children	who	range	in	age	from	infant	through	adolescent.		166	
In	addition	a	few	adult	faces	sometimes	occur	also.		Some	of	the	images	are	innocuous	“family	photographs”.	The	167	
majority,	however,	feature	coercion,	abuse,	and	sexual	activity.		168	

From	a	face	recognition	viewpoint,	the	images	will	be	difficult	for	the	following	reasons	(in	order):	highly	variable	pose	169	
(including	adverse	compound	roll,	pitch	and	yaw);	occlusion	(by	hair,	other	persons,	body	parts	and	objects);	variable	and	170	
directional	lighting;	evidence	that	face	recognition	in	children	is	difficult	even	with	cooperative	photographs	–	see	171	
Annex	B	below	which	excerpts	[NIST8009].	172	

1.5. Offline	testing	173	

While	CHEXIA-FACE	is	intended	as	much	as	possible	to	mimic	operational	reality,	this	remains	an	offline	test	executed	on	174	
databases	of	images.	The	intent	is	to	assess	the	core	algorithmic	capability	of	face	detection,	recognition	and	clustering	175	
algorithms.		This	test	does	not	include	a	live	human-presents-to-camera	component.		Offline	testing	is	attractive	because	176	
it	allows	uniform,	fair,	repeatable,	and	efficient	evaluation	of	the	underlying	technologies.		Testing	of	implementations	177	
under	a	fixed	API	allows	for	a	detailed	set	of	performance	related	parameters	to	be	measured.		The	algorithms	will	be	run	178	
only	on	NIST	machines	by	NIST	employees.	179	

1.6. Phased	testing	180	

To	support	development,	CHEXIA-FACE	will	run	in	three	phases.	In	each	phase,	NIST	will	evaluate	implementations	on	a	181	
first-come-first-served	basis	and	will	return	results	to	providers	as	expeditiously	as	possible.	The	final	phase	will	result	in	182	
the	release	of	public	reports.		Providers	should	not	submit	revised	algorithms	to	NIST	until	NIST	provides	results	for	the	183	
prior	phase.			184	

For	the	schedule	and	number	of	algorithms	of	each	class	that	may	be	submitted,	see	sections	1.10	and	1.11.			185	

																																																																				
1	Compression	effects	were	studied	under	MBE	2010	in	NIST	Interagency	Report	7830,	linked	from	http://face.nist.gov/mbe		

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	7	of	36	

		

1.7. Interim	reports	186	

The	performance	of	each	implementation	will	be	reported	in	a	"score-card".		This	will	be	provided	to	the	participant.		It	is	187	
intended	to	facilitate	research	and	development,	not	for	marketing.	Score	cards	will:	be	machine	generated	(i.e.	scripted);	188	
be	provided	to	participants	with	identification	of	their	implementation,	include	timing,	accuracy	and	other	performance	189	
results,	include	results	from	other	implementations,	but	will	not	identify	the	other	providers;	be	expanded	and	modified	190	
as	revised	implementations	are	tested,	and	as	analyses	are	implemented;	be	produced	independently	of	the	status	of	191	
other	providers’	implementations;	be	regenerated	on-the-fly,	usually	whenever	any	implementation	completes	testing,	or	192	
when	new	analysis	is	added.	193	

NIST	does	not	intend	to	release	these	test	reports	publicly.		NIST	may	release	such	information	to	the	U.S.	Government	194	
test	sponsors;	NIST	will	request	that	agencies	not	release	this	content.		195	

1.8. Final	reports	196	

NIST	will	publish	one	or	more	final	public	reports.		NIST	may	also	publish:	additional	supplementary	reports	(typically	as	197	
numbered	NIST	Interagency	Reports);	in	other	academic	journals;	in	conferences	and	workshops	(typically	PowerPoint).	198	

Our	intention	is	that	the	final	test	reports	will	publish	results	for	the	best-performing	implementation	from	each	199	
participant.		Because	“best”	is	under-defined	(accuracy	vs.	time	vs.	template	size,	for	example),	the	published	reports	may	200	
include	results	for	other	implementations.		The	intention	is	to	report	results	for	the	most	capable	implementations	(see	201	
section	1.12,	on	metrics).		Other	results	may	be	included	(e.g.	in	appendices)	to	show,	for	example,	examples	of	progress	202	
or	tradeoffs.			203	

IMPORTANT:	All	Phase	3	results	will	be	attributed	to	the	providers.			204	

IMPORTANT:		Phase	1	and	Phase	2	results	will	be	attributed	to	the	providers	UNLESS,	ahead	of	the	Phase	3	submission	205	
deadline,	the	participant	emails	NIST	to	request	their	organization	name	should	NOT	appear	in	the	CHEXIA	public	reports	206	
and	presentations.		In	that	case	the	quantitative	results	will	still	appear	in	the	published	report	but	without	any	207	
appearance	of	the	participant’s	name.		This	provision	is	being	included	in	this	evaluation	because	NIST	understands	that	208	
this	is	a	new	and	difficult	application	of	face	recognition	technology.	209	

1.9. Application	scenarios	210	

The	test	will	include	one-to-one	verification	and	one-to-many	identification	tests	[MBE	2010,	NIST8009]	for	still	images	211	
and	video	clips.		As	described	in	Table	2,	the	test	is	intended	to	represent:	212	

― Close-to-operational	use	of	face	recognition	technologies	in	identification	applications	in	which	the	enrolled	dataset	213	
could	contain	images	in	the	hundreds	of	thousands.	214	

― Verification	scenarios	in	which	samples	are	compared.	215	

― Face	detection	in	stills	and	videos	with	one	or	more	persons	in	the	sample.	216	

― Grouping	(clustering)	identities	in	mixed	media.	217	

Table	2	–	Subtests	supported	under	the	CHEXIA-FACE	activity	218	

#	 	 A	 C	 D	 G	
1.	 Aspect	 1:1	verification	 1:N	identification	 Detection		 Clustering	
2.	 Enrollment	

dataset	
None	(applies	to	single	
samples;	there	is	no	
concept	of	gallery	or	
enrollment	database)	

N	enrolled	subjects	 None,	application	to	
single	images	

The	concepts	of	enrollment	and	
search	sets	do	not	exist	

3.	 Prior	NIST	test	
references	

Equivalent	to	1	to	1	
matching	in	[MBE	2010]	

Equivalent	to	1	to	N	
matching	in	[NIST	8009]	

	 	

4.	 Example	
application	

Verification	of	e-Passport	
facial	image	against	a	live	
border-crossing	image.	

Open-set	identification	
of	an	image	against	a	
central	database,	e.g.	a	
search	of	a	mugshot	
against	a	database	of	
known	criminals.	

Often	used	in	
conjunction	with	face	
recognition;	also	used	in	
video	surveillance,	
human	computer	
interaction,	and	image	

Assign	images	to	groups	if	they	
contain	the	same	individual.		Given	
many	images	or	videos	containing	
many	individuals,	produce	as	many	
clusters	as	there	are	unique	
individuals,	and	associate	which	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	8	of	36	

		

database	management.	 images	they	appear	in.		
5.	 Score	or	

feature	space	
normalization	
support	

If	any,	normalization	
techniques	are	only	
possible	over	datasets	
internal	to	the	
implementation.	

Any	score	or	feature	
based	statistical	
normalization	
techniques	are	applied	
against	enrollment	
database	

	 Any	score	or	feature	based	statistical	
normalization	techniques-are	applied	
internally	

6.	 Intended	
number	of	
subjects	

Up	to	O(104)	 Up	to	O(105)	but	
dependence	on	N	will	be	
computed.	From	O(102)	
upwards.	

Expected	O(104)	 Expected	O(103)	

7.	 Number	of	
images	per	
individual	

Variable:	one	or	more	
still	images,	or	a	video	
clip	

Variable:	one	or	more	
still	images,	or	a	video	
clip	

Variable	 Variable	

8	 Number	of	
persons	in	one	
sample	

1	 1	or	more	persons	 1	or	more	persons	 1	or	more	persons	

	219	

NOTE	1:	The	vast	majority	of	images	are	color.		The	API	supports	both	color	and	greyscale	images.	220	

NOTE	2:	For	the	operational	datasets,	it	is	not	known	what	processing	was	applied	to	the	images	before	they	were	221	
archived.		So,	for	example,	we	do	not	know	whether	gamma	correction	was	applied.		NIST	considers	that	best	practice,	222	
standards	and	operational	activity	in	the	area	of	image	preparation	remains	weak.	223	

1.10. Options	for	participation	224	

The	following	rules	apply:	225	

― A	participant	must	properly	follow,	complete	and	submit	the	Annex	A	Participation	Agreement.		This	must	be	done	226	
once,	not	before	January	1,	2016.		It	is	not	necessary	to	do	this	for	each	submitted	implementation.	227	

― All	participants	shall	submit	at	least	one	class	D	algorithm.	228	

― Class	A	(1:1)	algorithms	may	be	submitted	only	if	at	least	1	class	D	(detection)	algorithm	is	also	submitted.	229	

― Class	C	(1:N)	algorithms	may	be	submitted	only	if	at	least	1	class	A	(1:1)	algorithm	is	also	submitted.	230	

― Class	G	(clustering)	algorithms	may	be	submitted	only	if	at	least	1	class	C	(1:N)	algorithm	is	also	submitted.	231	

― Class	D	(detection)	algorithms	may	be	submitted	alone,	without	submission	to	any	other	classes	of	participation.	232	

― All	submissions	shall	implement	exactly	one	of	the	functionalities	defined	in	Table	3.		A	library	shall	not	implement	233	
the	API	of	more	than	one	class.	234	

Table	3	–	CHEXIA-FACE	classes	of	participation	235	

Function	 1:1	verification	 1:N	identification	 Detection	 Clustering	
Class	label	 A	 C	 D	 G	
Co-requisite	class		 D	 D	+	A	 None	 D	+	A	+	C	
API	requirements	 3.1	 3.2	 3.3	 3.4	

1.11. Number	and	schedule	of	submissions		236	

The	test	is	conducted	in	three	phases,	as	scheduled	on	page	2.		The	maximum	total	(i.e.	cumulative)	number	of	237	
submissions	is	regulated	in	Table	4.	238	

Table	4	–	Cumulative	total	number	of	algorithms,	by	class	239	

#	 Phase	1	 Total	over	Phases	1	+	2	 Total	over	Phases	1	+	2	+	3	
Class	A	:	Verification	 2	 4	 6				if	at	least	1	was	successfully	executed	by	end	Phase	1	

2				otherwise	
Class	C	:	Identification	 2	 4	 6				if	at	least	1	was	successfully	executed	by	end	Phase	1	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	9	of	36	

		

2				otherwise	
Class	D	:	Detection	 2	 2	 3				if	at	least	1	was	successfully	executed	by	end	Phase	1	

1				otherwise	
Class	G	:	Clustering	 2	 2	 4				if	at	least	1	was	successfully	executed	by	end	Phase	1	

2				otherwise	

The	numbers	above	may	be	increased	as	resources	allow.	240	

NIST	cannot	conduct	surveys	over	runtime	parameters	–	essentially	to	limit	the	extent	to	which	participants	are	able	to	241	
train	on	the	test	data.	242	

1.12. Core	accuracy	metrics	243	

Notionally	the	error	rates	for	verification	applications	will	be	false	match	and	false	non-match	error	rates,	FMR	and	FNMR.		244	
These	will	be	modified	to	include	the	effects	of	failure	to	make	a	template.			245	

For	identification	testing,	the	test	will	target	open-universe	applications	such	as	watch-lists.		It	will	not	address	the	closed-246	
set	task	because	it	is	operationally	uncommon.		Metrics	include	false	positive	and	negative	identification	rate	(FPIR	and	247	
FNIR)	that	depend	on	threshold	and	rank.	248	

Rank-based	metrics	are	appropriate	for	one-to-many	applications	that	employ	human	examiners	to	adjudicate	candidate	249	
lists.		Score	based	metrics	are	appropriate	for	cases	where	transaction	volumes	are	too	high	for	human	adjudication	or	250	
when	false	alarm	rates	must	otherwise	be	low.	See	[NIST8009].	251	

1.13. Reporting	template	size	252	

Because	template	size	is	influential	on	storage	requirements	and	computational	efficiency,	this	API	supports	253	
measurement	of	template	size.		NIST	will	report	statistics	on	the	actual	sizes	of	templates	produced	by	face	recognition	254	
implementations	submitted	to	CHEXIA-FACE.		NIST	may	report	statistics	on	runtime	memory	usage.		Template	sizes	were	255	
reported	in	the	FRVT	2012	test2,	IREX	III	test3	and	the	MBE-STILL	2010	test4.	256	

1.14. Reporting	computational	efficiency	257	

As	with	other	tests,	NIST	will	compute	and	report	recognition	accuracy.		In	addition,	NIST	will	also	report	timing	statistics	258	
for	all	core	functions	of	the	submitted	implementations.		This	includes	feature	extraction,	1:1	and	1:N	recognition,	259	
detection,	and	clustering.		For	an	example	of	how	efficiency	can	be	reported,	see	the	final	report	of	the	FRVT	2012	test	260	
[NIST8009]2,	and	the	MBE-STILL	2010	test4.	261	

Note	that	face	recognition	applications	optimized	for	pipelined	1:N	searches	may	not	demonstrate	their	efficiency	in	pure	262	
1:1	comparison	applications.	263	

1.15. Exploring	the	accuracy-speed	trade-space	264	

NIST	will	explore	the	accuracy	vs.	speed	tradeoff	for	face	recognition	algorithms	running	on	a	fixed	platform.		NIST	will	265	
report	both	accuracy	and	speed	of	the	implementations	tested.		While	NIST	cannot	force	submission	of	"fast	vs.	slow"	266	
variants,	participants	may	choose	to	submit	variants	on	some	other	axis	(e.g.	"experimental	vs.	mature")	267	
implementations.		NIST	encourages	“fast-less-accurate	vs.	slow-more-accurate”	with	a	factor	of	three	between	the	speed	268	
of	the	fast	and	slow	versions.	269	

1.16. Hardware	specification	270	

NIST	intends	to	support	high	performance	by	specifying	the	runtime	hardware	beforehand.	There	are	several	types	of	271	
computer	blades	that	may	be	used	in	the	testing.		The	following	list	gives	some	details	about	the	hardware	of	each	blade	272	
type:	273	

• Dell	M610	-	Dual	Intel	Xeon	X5680	3.3	GHz	CPUs	(6	cores	each)		274	

• Dell	M910	-	Dual	Intel	Xeon	X7560	2.3	GHz	CPUs	(8	cores	each)	275	
																																																																				
2	See	the	FRVT	2012	test	report:	NIST	Interagency	Report	8009,	linked	from	http://www.nist.gov/itl/iad/ig/frvt-2013.cfm		
	
4	See	the	MBE-STILL	2010	test	report,	NIST	Interagency	Report	7709,	linked	from	http://face.nist.gov/mbe		

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	10	of	36	
	

• Dual	Intel	Xeon	E5-2695	3.3	GHz	CPUs	(14	cores	each;	56	logical	CPUs	total)	with	Dual	NVIDIA	Tesla	K40	GPUs	276	

NOTE:	Implementations	must	be	functional	on	machines	with	and	without	GPU	capability.		277	

Each	CPU	has	512K	cache.	The	bus	runs	at	667	Mhz.		The	main	memory	is	192	GB	Memory	as	24	8GB	modules.		We	278	
anticipate	that	16	processes	can	be	run	without	time	slicing.	279	

NIST	is	requiring	use	of	64	bit	implementations	throughout.		This	will	support	large	memory	allocation	to	support	1:N	280	
identification	task.		For	video,	given	the	data	expectations	and	the	occurrence	of	faces	in	the	imagery,	we	anticipate	the	281	
developers	will	have	sufficient	memory	for	video	templates.		Note	that	while	the	API	allows	read	access	of	the	disk	during	282	
the	1:N	search,	the	disk	is,	of	course,	relatively	slow.	283	

Some	of	the	section	3	API	calls	allow	the	implementation	to	write	persistent	data	to	hard	disk.		The	amount	of	data	shall	284	
not	exceed	200	kilobytes	per	enrolled	image.		NIST	will	respond	to	prospective	participants'	questions	on	the	hardware,	285	
by	amending	this	section.	286	

1.17. Operating	system,	compilation,	and	linking	environment	287	

The	operating	system	that	the	submitted	implementations	shall	run	on	will	be	released	as	a	downloadable	file	accessible	288	
from	http://nigos.nist.gov:8080/evaluations/	which	is	the	64-bit	version	of	CentOS	7	running	Linux	kernel	3.10.0.	289	

For	this	test,	Windows	machines	will	not	be	used.	Windows-compiled	libraries	are	not	permitted.		All	software	must	run	290	
under	Linux.	291	

NIST	will	link	the	provided	library	file(s)	to	our	C++	language	test	drivers.		Participants	are	required	to	provide	their	library	292	
in	a	format	that	is	linkable	using	the	C++11	compiler,	g++	version	4.8.3.			293	

A	typical	link	line	might	be	294	

g++	-std=C++11	-I.	-Wall	-m64	-o	chexiaface	chexiaface.cpp		-L.		–lchexiaface_Enron_A_07		295	

The	Standard	C++	library	should	be	used	for	development.		The	prototypes	from	this	document	will	be	written	to	a	file	296	
"chexiaface.h"	which	will	be	included	via		297	

#include	<chexiaface.h>	

The	header	files	will	be	made	available	to	implementers	at	http://nigos.nist.gov:8080/chexia-face/	298	

NIST	will	handle	all	input	of	images	via	the	JPEG	and	PNG	libraries,	sourced,	respectively	from	http://www.ijg.org/	and	see	299	
http://libpng.org.	300	

All	compilation	and	testing	will	be	performed	on	x86	platforms.		Thus,	participants	are	strongly	advised	to	verify	library-301	
level	compatibility	with	g++	(on	an	equivalent	platform)	prior	to	submitting	their	software	to	NIST	to	avoid	linkage	302	
problems	later	on	(e.g.	symbol	name	and	calling	convention	mismatches,	incorrect	binary	file	formats,	etc.).	303	

Dependencies	on	external	dynamic/shared	libraries	such	as	compiler-specific	development	environment	libraries	are	304	
discouraged.		If	absolutely	necessary,	external	libraries	must	be	provided	to	NIST	upon	prior	approval	by	the	Test	Liaison.	305	

1.18. Software	and	Documentation	306	

1.18.1. Library	and	Platform	Requirements	307	

Participants	shall	provide	NIST	with	binary	code	only	(i.e.	no	source	code).		Header	files	(“.h”)	are	allowed,	but	these	shall	308	
not	contain	intellectual	property	of	the	company	nor	any	material	that	is	otherwise	proprietary.		The	SDK	should	be	309	
submitted	in	the	form	of	a	dynamically	linked	library	file.	310	

The	core	library	shall	be	named	according	to	Table	5.		Additional	shared	object	library	files	may	be	submitted	that	support	311	
this	“core”	library	file	(i.e.	the	“core”	library	file	may	have	dependencies	implemented	in	these	other	libraries).	312	

Intel	Integrated	Performance	Primitives	(IPP)	libraries	are	permitted	if	they	are	delivered	as	a	part	of	the	developer-313	
supplied	library	package.	It	is	the	provider’s	responsibility	to	establish	proper	licensing	of	all	libraries.		The	use	of	IPP	314	
libraries	shall	not	prevent	run	on	CPUs	that	do	not	support	IPP.		Please	take	note	that	some	IPP	functions	are	315	
multithreaded	and	threaded	implementations	may	complicate	comparative	timing.	316	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	11	of	36	
	

Table	5	–	Implementation	library	filename	convention	317	

Form	 libCHEXIAFACE_provider_class_sequence.ending	
Underscore	
delimited	parts	of	
the	filename	

libCHEXIAFACE	 provider	 class	 sequence	 ending	

Description	 First	part	of	the	
name,	required	to	
be	this.	

Single	word	name	of	
the	main	provider	
EXAMPLE:		Acme	

Function	classes	
supported	in	Table	
3.	
EXAMPLE:	C	

A	two	digit	decimal	
identifier	to	start	at	00	and	
increment	by	1	every	time	a	
library	is	sent	to	NIST.		
EXAMPLE:	07	

.so	

Example	 libCHEXIAFACE_Acme_C_07.so	
	318	

NIST	will	report	the	size	of	the	supplied	libraries.	319	

1.18.2. Configuration	and	developer-defined	data	320	

The	implementation	under	test	may	be	supplied	with	configuration	files	and	supporting	data	files.		NIST	will	report	the	321	
size	of	the	supplied	configuration	files.	322	

1.18.3. Submission	folder	hierarchy	323	

Participant	submissions	should	contain	the	following	folders	at	the	top	level	324	
• lib/	-	contains	all	participant-supplied	software	libraries	325	
• config/	-	contains	all	configuration	and	developer-defined	data	326	
• doc/	-	contains	any	participant-provided	documentation	regarding	the	submission	327	

1.18.4. Installation	and	Usage	328	

The	implementation	must	install	easily	(i.e.	one	installation	step	with	no	participant	interaction	required)	to	be	tested,	329	
and	shall	be	executable	on	any	number	of	machines	without	requiring	additional	machine-specific	license	control	330	
procedures	or	activation.	331	

The	implementation	shall	be	installable	using	simple	file	copy	methods.	It	shall	not	require	the	use	of	a	separate	332	
installation	program.			333	

The	implementation	shall	not	use	nor	enforce	any	usage	controls	or	limits	based	on	licenses,	number	of	executions,	334	
presence	of	temporary	files,	etc.		It	shall	remain	operable	with	no	expiration	date.	335	

Hardware	(e.g.	USB)	activation	dongles	are	not	acceptable.	336	

1.18.5. Documentation	337	
Participants	shall	provide	documentation	of	additional	functionality	or	behavior	beyond	that	specified	here.		The	338	
documentation	must	define	all	(non-zero)	developer-defined	error	or	warning	return	codes.	339	

1.18.6. Modes	of	operation	340	

Implementations	shall	not	require	NIST	to	switch	“modes”	of	operation	or	algorithm	parameters.	For	example,	the	use	of	341	
two	different	feature	extractors	must	either	operate	automatically	or	be	split	across	two	separate	library	submissions.	342	

1.19. Runtime	behavior	343	

1.19.1. Interactive	behavior,	stdout,	logging	344	

The	implementation	will	be	tested	in	non-interactive	“batch”	mode	(i.e.	without	terminal	support).	Thus,	the	submitted	345	
library	shall:	346	

− Not	use	any	interactive	functions	such	as	graphical	user	interface	(GUI)	calls,	or	any	other	calls	which	require	347	
terminal	interaction	e.g.	reads	from	“standard	input”.	348	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	12	of	36	
	

− Run	quietly,	i.e.	it	should	not	write	messages	to	"standard	error"	and	shall	not	write	to	“standard	output”.	349	

− If	requested	by	NIST	for	debugging,	include	a	logging	facility	in	which	debugging	messages	are	written	to	a	log	file	350	
whose	name	includes	the	provider	and	library	identifiers	and	the	process	PID.	351	

1.19.2. Exception	Handling	352	
The	application	should	include	error/exception	handling	so	that	in	the	case	of	a	fatal	error,	the	return	code	is	still	353	
provided	to	the	calling	application.	354	

1.19.3. External	communication	355	
Processes	running	on	NIST	hosts	shall	not	side-effect	the	runtime	environment	in	any	manner,	except	for	memory	356	
allocation	and	release.		Implementations	shall	not	write	any	data	to	external	resource	(e.g.	server,	file,	connection,	or	357	
other	process),	nor	read	from	such.	If	detected,	NIST	will	take	appropriate	steps,	including	but	not	limited	to,	cessation	of	358	
evaluation	of	all	implementations	from	the	supplier,	notification	to	the	provider,	and	documentation	of	the	activity	in	359	
published	reports.	360	

1.19.4. Stateless	behavior	361	
All	components	in	this	test	shall	be	stateless,	except	as	noted.		Thus,	all	functions	should	give	identical	output,	for	a	given	362	
input,	independent	of	the	runtime	history.			NIST	will	institute	appropriate	tests	to	detect	stateful	behavior.	If	detected,	363	
NIST	will	take	appropriate	steps,	including	but	not	limited	to,	cessation	of	evaluation	of	all	implementations	from	the	364	
supplier,	notification	to	the	provider,	and	documentation	of	the	activity	in	published	reports.		365	

1.20. Threaded	computations	366	

Table	6	shows	the	limits	on	the	numbers	of	threads	an	implementation	may	use	for	each	of	the	classes	of	participation.		In	367	
many	cases	multithreading	is	not	permitted	(i.e.	T=1)	because	NIST	will	parallelize	the	test	by	dividing	the	workload	across	368	
many	cores	and	many	machines.	369	

Table	6	–	Number	of	threads	allowed	for	each	application	370	

	 A	 C	 D	 G	
Function	 1:1	verification	 1:N	identification	 Detection	 Clustering	
Feature	extraction	 1	 1	

1	 1	≤	T	≤	16	
Verification	 1	 NA	
Finalize	enrollment	(before	1:N)	 NA	 1	≤	T	≤	16	
Identification	 NA	 1	

For	comparative	timing,	the	IREX	III3	test	report	estimated	a	factor	by	which	the	speed	of	threaded	algorithms	would	be	371	
adjusted.		Non-threaded	implementations	will	eliminate	the	need	for	NIST	to	apply	such	techniques	[IREX	III].	372	

NIST	will	not	run	implementations	from	participants	X	and	Y	on	the	same	machine	at	the	same	time.	373	

To	expedite	testing,	for	single-threaded	libraries,	NIST	will	run	P	>	2	processes	concurrently.		NIST's	calling	applications	are	374	
single-threaded.	375	

1.21. Time	limits	376	

The	elemental	functions	of	the	implementations	shall	execute	under	the	time	constraints	of	Table	7.		These	time	limits	377	
apply	to	the	function	call	invocations	defined	in	section	3.		Assuming	the	times	are	random	variables,	NIST	cannot	regulate	378	
the	maximum	value,	so	the	time	limits	are	90-th	percentiles.		This	means	that	90%	of	all	operations	should	take	less	than	379	
the	identified	duration.	380	

The	time	limits	apply	per	image	or	video	frame.		When	K	images	of	a	person	are	present,	the	time	limits	shall	be	increased	381	
by	a	factor	K.	382	

Table	7	–	Processing	time	limits	in	milliseconds,	per	640	x	480	image	383	

	 A	 C	 D	 G	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	13	of	36	
	

Function	 1:1	verification		 1:N	identification	 Detection	 Clustering	
Feature	extraction	enrollment	 1000	(1	core)	

600x480	pixels	
1000	(1	core)	
600x480	pixels	

K*500	(1	core),	
where	K=number	
of	persons	in	the	

image	

	
	
	
	

K*1000	(1	core)	
where	K=number	
of	persons	in	the	
image.		See	NOTE.			

Feature	extraction	for	verification	or	
identification	

1000	(1	core)	
600x480	pixels	

1000	(1	core)	
600x480	pixels	

Verification	 5	(1	core)	 NA	
Identification	of	one	search	image	
against	1,000,000	single-image	
Multiface	records.	

NA	 10000	(16	cores)	
or	160000	(1	core)	

Enrollment	finalization	of	1,000,000	
single-image	Multiface	records	
(including	disk	IO	time)	

NA	 7,200,000	(up	to	16	
cores)	

NA	 NA	

	384	

NOTE:			NIST	anticipates	that	the	duration	of	clustering	calls	will	have	linear	and	quadratic	components,	for	template	385	
generation	and	matching	respectively.		We	will	assess	compliance	with	our	time	limit	requirements	based	on	small	386	
clustering	tasks	where	template	generation	duration	dominates	the	total.	387	

1.22. Ground	truth	integrity	388	

Some	of	the	test	data	is	derived	from	operational	systems	and	may	contain	ground	truth	errors	in	which	389	

― a	single	person	is	present	under	two	different	identifiers,	or	390	

― two	persons	are	present	under	one	identifier,	or	391	

― in	which	a	face	is	not	present	in	the	image.	392	

If	these	errors	are	detected,	they	will	be	removed.		NIST	will	use	aberrant	scores	(high	impostor	scores,	low	genuine	393	
scores)	to	detect	such	errors.		This	process	will	be	imperfect,	and	residual	errors	are	likely.		For	comparative	testing,	394	
identical	datasets	will	be	used	and	the	presence	of	errors	should	give	an	additive	increment	to	all	error	rates.		For	very	395	
accurate	implementations	this	will	dominate	the	error	rate.		NIST	intends	to	attach	appropriate	caveats	to	the	accuracy	396	
results.			For	prediction	of	operational	performance,	the	presence	of	errors	gives	incorrect	estimates	of	performance.	397	

2. Data	structures	supporting	the	API	398	

2.1. Namespace	399	

All	data	structures	and	API	interfaces/function	calls	will	be	declared	in	the	CHEXIAFACE	namespace.	400	

2.2. Overview	401	

This	section	describes	separate	APIs	for	the	core	face	recognition	applications	described	in	section	1.9.		All	submissions	to	402	
CHEXIA-FACE	shall	implement	the	functions	required	by	the	rules	for	participation	listed	before	Table	3.			403	

2.3. Requirement	404	

CHEXIA-FACE	participants	shall	implement	the	relevant	C++	prototyped	interfaces	of	section	3.		C++	was	chosen	in	order	405	
to	make	use	of	some	object-oriented	features.	406	

2.4. File	formats	and	data	structures	407	

2.4.1. Overview	408	

In	this	face	recognition	test,	an	individual	is	represented	by	K	≥	1	two-dimensional	facial	images	(which	may	be	video	409	
frames),	and	by	subject	and	image-specific	metadata.		410	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	14	of	36	
	

2.4.2. Data	structures	for	encapsulating	multiple	images	or	video	frames	411	
Some	of	the	proposed	datasets	includes	K	>	2	images	per	person	for	some	persons.		This	affords	the	possibility	to	model	a	412	
recognition	scenario	in	which	a	new	image	of	a	person	is	compared	against	all	prior	images5.		Use	of	multiple	images	per	413	
person	has	been	shown	to	elevate	accuracy	over	a	single	image	[MBE	2010].	414	

For	still-face	recognition	in	this	test,	NIST	will	enroll	K	≥	1	images	under	each	identity.		Both	enrolled	gallery	and	probe	415	
samples	may	consist	of	multiple	images	such	that	a	template	is	the	result	of	applying	feature	extraction	to	a	set	of	K	≥	1	416	
images	and	then	integrating	information	from	them.		An	algorithm	might	fuse	K	feature	sets	into	a	single	model	or	might	417	
simply	maintain	them	separately	-	In	any	case	the	resulting	proprietary	template	is	contained	in	a	contiguous	block	of	418	
data.		All	verification	and	identification	functions	operate	on	such	multi-image	templates.	419	

The	number	of	images	per	person	will	vary,	and	images	may	not	be	acquired	uniformly	over	time.		NIST	currently	420	
estimates	that	the	number	of	images	K	will	never	exceed	1000.		For	the	CHEXIA-FACE	API,	K	images	of	an	individual	are	421	
contained	in	data	structure	of	Table	13.		Each	file	contains	a	standardized	image	format,	e.g.	PNG	(lossless)	or	JPEG	(lossy).		422	

NOTE:	For	the	1:1	verification	task,	all	images	will	contain	one	and	only	one	face.		For	all	other	CHEXIA-FACE	tasks,	images	423	
in	the	test	may	contain	one	or	more	faces	in	an	image.		424	

Table	8	–	Structure	for	a	single	image	or	video	frame	425	

	 C++	code	fragment	 Remarks	
1. struct Image 	
2. { 	
3. uint16_t width; Number	of	pixels	horizontally	
4. uint16_t height; Number	of	pixels	vertically	
5. uint16_t depth; Number	of	bits	per	pixel.	Legal	values	are	8	and	24.	
6. uint8_t format; Flag	indicating	native	format	of	the	image	as	supplied	to	NIST	

0x01	=	JPEG	(i.e.	compressed	data)	
0x02	=	PNG	(i.e.	never	compressed	data)	

7. uint8_t *data; Pointer	to	raster	scanned	data.	Either	RGB	color	or	intensity.	
If	image_depth	==	24	this	points	to	3WH	bytes		RGBRGBRGB...	
If	image_depth	==		8	this	points	to		WH	bytes		IIIIIII	

8. }; 	

Table	9	–	Structure	for	a	set	of	images	or	video	frames	426	

	 C++	code	fragment	 Remarks	
1. struct Multiface

{
	

2. typedef std::vector<Image> images; Vector	containing	F	pre-allocated	face	images.		The	number	of	
items	is	accessible	via	the	vector::size()	function.	

3. MultifaceLabel description; Single	description	of	the	Multiface.		The	allowed	values	for	
this	field	are	specified	in	the	enumeration	in	Table	10.	

4. uint16_t framesPerSec; The	frame	rate	of	the	video	sequence	in	frames-per-second.	
Only	defined	if	description==Video;	otherwise	set	to	-1.	

5. }; 	
	427	
A	Multiface	will	be	accompanied	by	one	of	the	labels	given	below.			Face	recognition	implementations	submitted	to	428	
CHEXIA-FACE	should	tolerate	Multifaces	of	any	category.	429	

Table	10	–	Labels	describing	categories	of	Multifaces	430	

	 Label	as	C++	enumeration	 Meaning	

																																																																				
5	For	example,	if	a	child	is	subject	to	a	new	exploitation	event	then	imagery	from	that	event	can	be	searched	against	a	database	of	all	
prior	instances	of	exploitation,	including	from	that	child.	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	15	of	36	
	

1.

enum class MultifaceLabel {
	

2. Unknown=0, Either	the	label	is	unknown	or	unassigned.	
3. Fixed=1, Images	are	still	photos	from	a	non-moving	camera.	
4. Event=2, Images	are	still	photos	from	the	same	event,	possibly	from	several	cameras	or	with	

camera	movement.	
5. Group=3, Still	photos	from	one	person	on	arbitrary	occasions.	
6. Video=4 Images	are	a	sequence	of	video	frames.	
7. }; 	

	431	

2.4.3. Data	structure	for	eye	coordinates	432	
Implementations	should	return	eye	coordinates	of	each	facial	image.		This	function,	while	not	necessary	for	a	recognition	433	
test,	will	assist	NIST	in	assuring	the	correctness	of	the	test	database.		The	primary	mode	of	use	will	be	for	NIST	to	inspect	434	
images	for	which	eye	coordinates	are	not	returned,	or	differ	between	implementations.	435	

The	eye	coordinates	shall	follow	the	placement	semantics	of	the	ISO/IEC	19794-5:2005	standard	-	the	geometric	436	
midpoints	of	the	endocanthion	and	exocanthion	(see	clause	5.6.4	of	the	ISO	standard).	437	

Sense:	The	label	"left"	refers	to	subject's	left	eye	(and	similarly	for	the	right	eye),	such	that	xright	<	xleft.	438	

Table	11	–	Structure	for	a	pair	of	eye	coordinates	439	

	 C++	code	fragment		 Remarks	
1. struct EyePair 	
2. { 	
3. bool isLeftAssigned; If	the	subject’s	left	eye	coordinates	have	been	computed	and	assigned	successfully,	this	

value	should	be	set	to	true,	otherwise	false.	
4. bool isRightAssigned; If	the	subject’s	right	eye	coordinates	have	been	computed	and	assigned	successfully,	this	

value	should	be	set	to	true,	otherwise	false.	
5. int16_t xleft; X	and	Y	coordinate	of	the	center	of	the	subject's	left	eye.		Out-of-range	values	(e.g.	x	<	0	

or	x	>=	width)	indicate	the	implementation	believes	the	eye	center	is	outside	the	image.	6. int16_t yleft;

7. int16_t xright; X	and	Y	coordinate	of	the	center	of	the	subject's	right	eye.	Out-of-range	values	(e.g.	x	<	0	
or	x	>=	width)	indicate	the	implementation	believes	the	eye	center	is	outside	the	image.		8. int16_t yright;

9. uint16_t frameNum For	Multifaces	where	description==Video,	this	would	be	the	frame	number	
that	corresponds	to	the	video	frame	from	which	the	eye	coordinates	were	generated.		
(i.e.,	the	i-th	frame	from	the	video	sequence).		This	field	should	not	be	set	for	eye	
coordinates	for	a	single	still	image.	

10. }; 	

2.4.4. Data	type	for	representing	eye	coordinates	from	a	Multiface	440	

Table	12	–	PersonTrajectory	typedef	441	

	 C++	code	fragment		 Remarks	
1. using PersonTrajectory =

std::vector<EyePair>;
Vector	of	EyePair	objects	for	a	Multiface	where	eyes	were	detected.		This	data	
structure	should	store	eye	coordinates	for	each	video	frame	or	image	where	eyes	
were	detected	for	a	particular	person.		For	Multifaces	where	the	person’s	eyes	
were	not	detected,	the	SDK	shall	not	add	an	EyePair	to	this	data	structure.	
	
If	a	face	can	be	detected,	but	not	the	eyes,	the	implementation	should	nevertheless	
fill	this	data	structure	with	(x,y)LEFT	==	(x,y)RIGHT	representing	some	point	on	the	
center	of	the	face.	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	16	of	36	
	

2.4.5. Class	for	representing	a	person	detected	in	a	Multiface	442	

Table	13	-	Class	for	representing	a	person	443	

	 C++	code	fragment		 Remarks	
1. class PersonRep 	
2. {

private:
	

3. PersonTrajectory eyeCoordinates; Data	structure	for	capturing	eye	coordinates	
4. PersonTemplate proprietaryTemplate; PersonTemplate	is	a	wrapper	to	a	uint8_t*	for	

capturing	proprietary	template	data	representing	a	
person	from	a	Multiface.	

5. uint64_t templateSize; Size	of	PersonTemplate	
6. public: 	
 PersonRep(); Default	constructor	
7.	 void pushBackEyeCoord(const EyePair &eyes); This	function	should	be	used	to	add	EyePairs	for	

the	video	frames	or	images	where	eye	coordinates	
were	detected.	

8. void setTemplate(PersonTemplate templ, uint64_t size); This	function	should	be	used	to	set	the	template	
data.		After	the	implementation	calls	setTemplate(),	
they	should	not	attempt	to	modify	or	delete	the	
template	data	that	the	managed	pointer	refers	to.	

9. std::shared_ptr<uint8_t> getPersonTemplatePtr(); This	function	returns	a	managed	pointer	to	uint8_t	
to	the	template	data.	

10. uint64_t getPersonTemplateSize() const; This	function	returns	the	size	of	the	template	data.	
11.	 //… getter methods, copy constructor,

 //… assignment operator
	

12.	 }; 	

2.4.6. Data	Structure	for	detected	face	444	
For	face	detection,	implementations	shall	return	bounding	box	coordinates	of	each	detected	face	in	an	image.		See	445	
section	3.3	for	API	details.	446	

Table	14	–	Structure	for	bounding	box	around	a	detected	face	447	

	 C++	code	fragment	 Remarks	
1. struct BoundingBox

{
	

2. uint16_t x; x-coordinate	of	top-left	corner	of	bounding	box	around	face	
3. uint16_t y; y-coordinate	of	top-left	corner	of	bounding	box	around	face	
4. uint16_t width; width,	in	pixels,	of	bounding	box	around	face	
5. uint16_t height; height,	in	pixels,	of	bounding	box	around	face	
6. double confidence; Higher	value	indicates	more	certainty	that	this	region	contains	a	face	
7. }; 	

2.4.7. Data	Structure	for	hypothesized	cluster	membership	448	

For	clustering,	implementations	shall	assign	image	samples	to	clusters	using	the	structure	of	Table	15.		See	section	3.4	for	449	
API	details.	450	

Table	15	–	Structure	for	a	single	hypothesized	cluster	membership	451	

	 C++	code	fragment	 Remarks	
1. struct ClusterMember 	
2. { 	
3. uint32_t clusterId; Non-negative	integer	assigned	by	the	implementation	indicating	a	cluster	label.		All	images	of	a	

person	should	share	this	same	integer.	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	17	of	36	
	

4. double similarityScore; Measure	of	similarity	between	the	input	sample	and	other	images	of	the	same	cluster	
(presumably	of	the	same	person).	The	score	should	be	a	non-negative	value	on	a	continuous	
range.		The	score	will	be	used	to	perform	threshold-based	analysis	of	algorithm	performance.	
For	example,	NIST	may	perform	analyses	that	assigns	samples	to	clusters	only	when	their	
corresponding	similarly	score	is	at	or	above	a	threshold.		

5. BoundingBox face; Bounding	box	coordinates	corresponding	to	the	face/identity	belonging	to	clusterId	from	
the	image.	

6. }; 	

Table	16	–	Structure	for	hypothesized	cluster	membership	for	face(s)	in	an	image	452	

	 C++	code	fragment	 Remarks	
1. struct ClusterMembersInImage 	
2. { 	
3. ReturnStatus status; status.code	should	be	set	as	follows:	

	
ReturnCode::Success	if	the	input	sample	was	processed	successfully	
ReturnCode::NoFaceError	if	no	faces	could	be	detected	in	the	input	
ReturnCode::ExtractError	if	the	software	failed	to	process	the	image	
ReturnCode::RefuseInput	if	the	software	detects	malformed	input	

4. std::vector<ClusterMember> members; For	each	person	found	in	an	image,	the	list	of	hypothesized	cluster	
membership(s).	

5. }; 	

2.4.8. Data	structure	for	result	of	an	identification	search	453	

All	identification	searches	shall	return	a	candidate	list	of	a	NIST-specified	length.		The	list	shall	be	sorted	with	the	most	454	
similar	matching	entries	list	first	with	lowest	rank.		The	data	structure	shall	be	that	of	Table	17.		See	section	3.2	for	API	455	
details.	456	

Table	17	–	Structure	for	a	candidate	457	

	 C++	code	fragment	 Remarks	
1. struct Candidate 	
2. { 	
3. bool isAssigned; If	the	candidate	is	valid,	this	should	be	set	to	true.		If	the	candidate	computation	failed,	this	

should	be	set	to	false.	
4. std::string templateId; The	Template	ID	from	the	enrollment	database	manifest	defined	in	section	2.5.	
5. double similarityScore; Measure	of	similarity	between	the	identification	template	and	the	enrolled	candidate.	Higher	

scores	mean	more	likelihood	that	the	samples	are	of	the	same	person.	

An	algorithm	is	free	to	assign	any	value	to	a	candidate.		The	distribution	of	values	will	have	an	
impact	on	the	appearance	of	a	plot	of	false-negative	and	false-positive	identification	rates.	

6. }; 	

2.4.9. Data	structure	return	value	of	API	function	calls	458	

Table	18	–	Enumeration	of	return	codes	459	

	 Return	code	as	C++	enumeration	 Meaning	
 enum class ReturnCode { 	
1. Success=0, Success	
2. ConfigError=1, Error	reading	configuration	files	
3. RefuseInput=2, Elective	refusal	to	process	the	input	
4. ExtractError=3, Involuntary	failure	to	process	the	image	
5. ParseError=4, Cannot	parse	the	input	data	
6. TemplateCreationError=5, Elective	refusal	to	produce	a	template	(e.g.	insufficient	pixels	between	the	

eyes)	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	18	of	36	
	

7. VerifTemplateError=6, For	matching,	either	or	both	of	the	input	templates	were	result	of	failed	
feature	extraction	

8. EnrollDirError=7, An	operation	on	the	enrollment	directory	failed	(e.g.	permission,	space)	
9. NumDataError=8, The	SDK	cannot	support	the	number	of	persons	or	images	
10. TemplateFormatError=9, One	or	more	template	files	are	in	an	incorrect	format	or	defective	
11. InputLocationError=10, Cannot	locate	the	input	data	-	the	input	files	or	names	seem	incorrect	
12. NoFaceError=11, Cannot	detect	face	in	image	
13. VendorError=12 Vendor-defined	failure.		Failure	codes	must	be	documented	and	

communicated	to	NIST	with	the	submission	of	the	implementation	under	test.	
14. }; 	

	460	

Table	19	–	ReturnStatus	structure	461	

	 C++	code	fragment	 Meaning	
 struct ReturnStatus { 	
1. CHEXIAFACE::ReturnCode code; Return	Code	
2. std::string info; Optional	information	string	
3. // constructors 	
4. }; 	

	462	

2.4.10. Data	type	for	similarity	scores	463	

Identification	and	verification	functions	shall	return	a	measure	of	the	similarity	between	the	face	data	contained	in	the	464	
two	templates.		The	datatype	shall	be	an	eight	byte	double	precision	real.		The	legal	range	is	[0,	DBL_MAX],	where	the	465	
DBL_MAX	constant	is	larger	than	practically	needed	and	defined	in	the	<limits.h>	include	file.	Larger	values	indicate	more	466	
likelihood	that	the	two	samples	are	from	the	same	person.	467	

Providers	are	cautioned	that	algorithms	that	natively	produce	few	unique	values	(e.g.	integers	on	[0,127])	will	be	468	
disadvantaged	by	the	inability	to	set	a	threshold	precisely,	as	might	be	required	to	attain	a	false	match	rate	of	exactly	469	
0.0001,	for	example.	470	

2.5. File	structures	for	enrolled	template	collection	471	

An	SDK	converts	a	Multiface	into	a	template,	using,	for	example	the	472	
convertMultifaceToEnrollmentTemplate	function	of	section	3.2.2.3.		To	support	the	class	C	identification	473	
functions	of	Table	3,	NIST	will	concatenate	enrollment	templates	into	a	single	large	file,	the	EDB	(for	enrollment	474	
database).		The	EDB	is	a	simple	binary	concatenation	of	proprietary	templates.		There	is	no	header.	There	are	no	475	
delimiters.	The	EDB	may	be	hundreds	of	gigabytes	in	length.	476	

This	file	will	be	accompanied	by	a	manifest;	this	is	an	ASCII	text	file	documenting	the	contents	of	the	EDB.		The	manifest	477	
has	the	format	shown	as	an	example	in	Table	20.		If	the	EDB	contains	N	templates,	the	manifest	will	contain	N	lines.		The	478	
fields	are	space	(ASCII	decimal	32)	delimited.		There	are	three	fields.		Strictly	speaking,	the	third	column	is	redundant.	479	

Important:	If	a	call	to	the	template	generation	function	fails,	or	does	not	return	a	template,	NIST	will	include	the	Template	480	
ID	in	the	manifest	with	size	0.		Implementations	must	handle	this	appropriately.	481	

Table	20	–	Enrollment	dataset	template	manifest	482	

Field	name	 Template	ID	 Template	Length	 Position	of	first	byte	in	EDB	
Datatype	required	 std::string	 Unsigned	decimal	integer	 Unsigned	decimal	integer	
Datatype	length	required	 	 4	bytes	 8	bytes	
Example	lines	of	a	manifest	file	appear	
to	the	right.	Lines	1,	2,	3	and	N	appear.	

90201744	 1024	 0	
person01	 1536	 1024	
7456433	 512	 2560	
...	 	 	
subject12	 1024	 307200000	

	483	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	19	of	36	
	

The	EDB	scheme	avoids	the	file	system	overhead	associated	with	storing	millions	of	individual	files.	484	

3. API	Specification	485	

3.1. 1:1	Verification	486	

3.1.1. Overview	487	

The	1:1	testing	will	proceed	in	three	phases:	preparation	of	enrollment	templates;	preparation	of	verification	templates;	488	
and	matching.		These	are	detailed	in	Table	21.	489	

Table	21	–	Functional	summary	of	the	1:1	application	490	

Phase	 Description	 Performance	Metrics	to	be	reported	by	NIST	
Initialization	 Function	to	read	configuration	data,	if	any.	 None	

Enrollment	 Given	K	≥	1	input	images	of	an	individual,	the	implementation	
will	create	a	proprietary	enrollment	template.		NIST	will	
manage	storage	of	these	templates.	

Statistics	of	the	time	needed	to	produce	a	template.	
Statistics	of	template	size.	Rate	of	failure	to	produce	a	
template	

Verification	 Given	K	≥	1	input	images	of	an	individual,	the	implementation	
will	create	a	proprietary	verification	template.		NIST	will	
manage	storage	of	these	templates.	

Statistics	of	the	time	needed	to	produce	a	template.	
Statistics	of	template	size.	Rate	of	failure	to	produce	a	
template.	

Matching	(i.e.	
comparison)	

Given	a	proprietary	enrollment	and	a	proprietary	verification	
template,	compare	them	to	produce	a	similarity	score.		

Statistics	of	the	time	taken	to	compare	two	templates.	
Accuracy	measures,	primarily	reported	as	DETs.	

	491	
NIST	requires	that	these	operations	may	be	executed	in	a	loop	in	a	single	process	invocation,	or	as	a	sequence	of	independent	process	492	
invocations,	or	a	mixture	of	both.	493	

3.1.2. API	494	

3.1.2.1. Interface	495	

The	Class	A	1:1	verification	software	under	test	must	implement	the	interface	VerifInterface	by	subclassing	this	496	
class	and	implementing	each	method	specified	therein.		See		497	

	 C++	code	fragment		 Remarks	
1. class VerifInterface;

typedef std::shared_ptr<VerifInterface> ClassAImplPtr;

class VerifInterface

	

2. {
public:

	

3. virtual ReturnStatus initializeVerification(
 const std::string &configurationLocation) = 0;

	

4. virtual ReturnStatus convertMultifaceToEnrollmentTemplate(
 const Multiface &inputFaces,
 PersonRep &templ) = 0;

	

	 virtual ReturnStatus convertMultifaceToVerificationTemplate(
 const Multiface &inputFaces,
 PersonRep &templ) = 0;

	

5. virtual ReturnStatus matchTemplates(
 const uint8_t *verificationTemplate,
 const uint32_t verificationTemplateSize,
 const uint8_t *enrollmentTemplate,
 const uint32_t enrollmentTemplateSize,
 double &similarity) = 0;

	

6.	 virtual void setGPU(uint8_t gpuNum) = 0; 	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	20	of	36	
	

7.	 static ClassAImplPtr getImplementation(); Factory	method	to	return	a	managed	pointer	
to	the	VerifInterface	object.		This	
function	is	implemented	by	the	submitted	
library	and	must	return	a	managed	pointer	to	
the	VerifInterface	object.	

8. }; 	
	498	
There	is	one	class	(static)	method	declared	in	VerifInterface,	getImplementation()	which	must	also	be	499	
implemented	by	the	SDK.	This	method	returns	a	shared	pointer	to	the	object	of	the	interface	type,	an	instantiation	of	the	500	
implementation	class.	A	typical	implementation	of	this	method	is	also	shown	below	as	an	example.	501	
	502	
	 C++	code	fragment		 Remarks	
 #include "chexiafaceNullImplClassA.h"

using namespace CHEXIAFACE;

NullImplClassA::NullImplClassA() { }

NullImplClassA::~NullImplClassA() { }

ClassAImplPtr
VerifInterface::getImplementation()
{
 NullImplClassA *p = new NullImplClassA();
 ClassAImplPtr ip(p);
 return (ip);
}

// Other implemented functions

	

	503	

3.1.2.2. Initialization	504	
The	NIST	test	harness	will	call	the	initialization	function	in	Table	22	before	calling	template	generation	or	matching.	505	

Table	22	–	Initialization		506	

Prototype	 ReturnStatus		initializeVerification(
const	std::string	&configurationLocation);	 Input	

Description	
	

This	function	initializes	the	SDK	under	test.		It	will	be	called	by	the	NIST	application	before	any	call	to	the	Table	24	
functions	convertMultifaceToEnrollmentTemplate	or	
convertMultifaceToVerificationTemplate.		The	implementation	under	test	should	set	all	parameters.		

Input	
Parameters	

configurationLocation	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	run-time	
data	files.		The	name	of	this	directory	is	assigned	by	NIST,	not	hardwired	by	the	provider.		The	
names	of	the	files	in	this	directory	are	hardwired	in	the	implementation	and	are	unrestricted.	

Output	
Parameters	

none	 	

Return	
Value	

See	Table	18	for	all	valid	return	code	values.	

3.1.2.3. GPU	Index	Specification	507	
For	implementations	using	GPUs,	the	function	of	Table	23	specifies	a	sequential	index	for	which	GPU	device	to	execute	508	
on.		This	enables	the	test	software	to	orchestrate	load	balancing	across	multiple	GPUs.	509	

Table	23	–	GPU	index	specification	510	

Prototypes	 void	setGPU	(
uint8_t	gpuNum);	 Input	

Description	 This	function	sets	the	GPU	device	number	to	be	used	by	all	subsequent	implementation	function	calls.		gpuNum	is	
a	zero-based	sequence	value	of	which	GPU	device	to	use.		0	would	mean	the	first	detected	GPU,	1	would	be	the	
second	GPU,	etc.		If	the	implementation	does	not	use	GPUs,	then	this	function	call	should	simply	do	nothing.	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	21	of	36	
	

Input	
Parameters	

gpuNum	 Index	number	representing	which	GPU	to	use.	
	 	

3.1.2.4. Template	generation	511	
The	functions	of	Table	24	support	role-specific	generation	of	template	data.		Template	format	is	entirely	proprietary.	512	

Table	24	–	Template	generation	513	

Prototypes	 ReturnStatus	convertMultifaceToEnrollmentTemplate(
const	Multiface	&inputFaces,	 Input	
PersonRep	&templ);	 Output	
int32_t		convertMultifaceToVerificationTemplate(
const	Multiface	&inputFaces,	 Input	
PersonRep	&templ);	 Output	

Description	 Takes	a	Multiface	and	populates	a	PersonRep	object.		In	all	cases,	even	when	unable	to	extract	features,	the	
template	generated	for	the	PersonRep	should	be	a	template	that	may	be	passed	to	the	matchTemplates	function	
without	error.		That	is,	this	routine	must	internally	encode	"template	creation	failed"	and	the	matcher	must	
transparently	handle	this.	

Input	
Parameters	

inputFaces	 Implementations	must	alter	their	behavior	according	to	the	number	of	images	
contained	in	the	structure,	and	the	types	per	Table	10.	

Output	
Parameters	

templ	 A	PersonRep	object	that	represents	a	single	template	generated	from	the	
Multiface.		

Return	Value	 See	Table	18	for	all	valid	return	code	values.	

3.1.2.5. Matching	514	
Matching	of	one	enrollment	against	one	verification	template	shall	be	implemented	by	the	function	of	Table	25.	515	

Table	25	–	Template	matching	516	

Prototype	 ReturnStatus	matchTemplates(
const	uint8_t	*verificationTemplate,	 Input	
const	uint32_t	verificationTemplateSize,	 Input	
const	uint8_t	*enrollmentTemplate,	 Input	
const	uint32_t	enrollmentTemplateSize,	 Input	
double	&similarity);	 Output	

Description	
	

Compare	two	proprietary	templates	and	output	a	similarity	score,	which	need	not	satisfy	the	metric	properties.	When	
either	or	both	of	the	input	templates	are	the	result	of	a	failed	template	generation	(see	Table	24),	the	similarity	score	
shall	be	-1	and	the	function	return	value	shall	be	VerifTemplateError.	

Input	
Parameters	

verificationTemplate	 A	template	generated	from	a	call	to	
convertMultifaceToVerificationTemplate().	

verificationTemplateSize	 The	size,	in	bytes,	of	the	input	verification	template	0	≤	N	≤	232	-	1	
enrollmentTemplate	 A	template	generated	from	a	call	to	

convertMultifaceToEnrollmentTemplate().	
enrollmentTemplateSize	 The	size,	in	bytes,	of	the	input	enrollment	template		0	≤	N	≤	232	-	1	

Output	
Parameters	

similarity	 A	similarity	score	resulting	from	comparison	of	the	templates,	on	the	range	[0,DBL_MAX].		
See	section	0.	

Return	
Value	

See	Table	18	for	all	valid	return	code	values.	

	 	517	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	22	of	36	
	

3.2. 1:N	Identification	518	

3.2.1. Overview	519	
The	1:N	application	proceeds	in	two	phases,	enrollment	and	identification.		The	identification	phase	includes	separate	520	
pre-search	feature	extraction	stage,	and	a	search	stage.	521	

The	design	reflects	the	following	testing	objectives	for	1:N	implementations.	522	

− support	distributed	enrollment	on	multiple	machines,	with	multiple	processes	running	in	parallel	

− allow	recovery	after	a	fatal	exception,	and	measure	the	number	of	occurrences	

− allow	NIST	to	copy	enrollment	data	onto	many	machines	to	support	parallel	testing	

− respect	the	black-box	nature	of	biometric	templates	

− extend	complete	freedom	to	the	provider	to	use	arbitrary	algorithms	

− support	measurement	of	duration	of	core	function	calls	

− support	measurement	of	template	size	

Table	26	–	Procedural	overview	of	the	identification	test	523	

Ph
as
e	 #	 Name	 Description	 Performance	Metrics	to	be	

reported	by	NIST	

En
ro
llm

en
t	

E1	 Initialization	 Give	the	implementation	advance	notice	of	the	number	of	individuals	
and	images	that	will	be	enrolled.	

Give	the	implementation	the	name	of	a	directory	where	any	provider-
supplied	configuration	data	will	have	been	placed	by	NIST.		This	location	
will	otherwise	be	empty.	

The	implementation	is	permitted	read-write-delete	access	to	the	
enrollment	directory	during	this	phase.		The	implementation	is	
permitted	read-only	access	to	the	configuration	directory.	

After	enrollment,	NIST	may	rename	and	relocate	the	enrollment	
directory	-	the	implementation	should	not	depend	on	the	name	of	the	
enrollment	directory.	

	

E2	 Parallel	
Enrollment	

For	each	of	N	individuals,	pass	multiple	images	of	the	individual	to	the	
implementation	for	conversion	to	a	combined	template.		The	
implementation	will	return	a	template	to	the	calling	application.	

The	implementation	is	permitted	read-only	access	to	the	enrollment	
directory	during	this	phase.		NIST's	calling	application	will	be	responsible	
for	storing	all	templates	as	binary	files.		These	will	not	be	available	to	the	
implementation	during	this	enrollment	phase.	

Multiple	instances	of	the	calling	application	may	run	simultaneously	or	
sequentially.		These	may	be	executing	on	different	computers.		The	
same	person	will	not	be	enrolled	twice.		

Statistics	of	the	times	needed	to	
enroll	an	individual.	

Statistics	of	the	sizes	of	created	
templates.	

	

	

The	incidence	of	failed	template	
creations.	

E3	 Finalization	 Permanently	finalize	the	enrollment	directory.		This	supports,	for	
example,	adaptation	of	the	image-processing	functions,	adaptation	of	
the	representation,	writing	of	a	manifest,	indexing,	and	computation	of	
statistical	information	over	the	enrollment	dataset.	

The	implementation	is	permitted	read-write-delete	access	to	the	
enrollment	directory	during	this	phase.	

Size	of	the	enrollment	database	
as	a	function	of	population	size	
N	and	the	number	of	images.	

Duration	of	this	operation.		The	
time	needed	to	execute	this	
function	shall	be	reported	with	
the	preceding	enrollment	times.	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	23	of	36	
	

Pr
e-
se
ar
ch
	

S1	 Initialization	 Tell	the	implementation	the	location	of	an	enrollment	directory.		The	
implementation	could	look	at	the	enrollment	data.	

The	implementation	is	permitted	read-only	access	to	the	enrollment	
directory	during	this	phase.	 Statistics	of	the	time	needed	for	this	
operation.	

Statistics	of	the	time	needed	for	
this	operation.	

	

S2	 Template	
preparation	

For	each	probe,	create	a	template	from	a	set	of	input	images.		This	
operation	will	generally	be	conducted	in	a	separate	process	invocation	
to	step	S3.	

The	implementation	is	permitted	no	access	to	the	enrollment	directory	
during	this	phase.	

The	result	of	this	step	is	a	search	template.	

Statistics	of	the	time	needed	for	
this	operation.	

Statistics	of	the	size	of	the	
search	template.	

Se
ar
ch
	

S3	 Initialization	 Tell	the	implementation	the	location	of	an	enrollment	directory.		The	
implementation	should	read	all	or	some	of	the	enrolled	data	into	main	
memory,	so	that	searches	can	commence.	

The	implementation	is	permitted	read-only	access	to	the	enrollment	
directory	during	this	phase.	

Statistics	of	the	time	needed	for	
this	operation.	

	

S4	 Search	 A	template	is	searched	against	the	enrollment	database.			

The	implementation	is	permitted	read-only	access	to	the	enrollment	
directory	during	this	phase.	

Statistics	of	the	time	needed	for	
this	operation.	

Accuracy	metrics	-	Type	I	+	II	
error	rates.	

Failure	rates.	

3.2.2. API	524	

3.2.2.1. Interface	525	

The	Class	C	1:N	identification	software	under	test	must	implement	the	interface	IdentInterface	by	subclassing	this	526	
class	and	implementing	each	method	specified	therein.		See		527	

	 C++	code	fragment		 Remarks	
1. class IdentInterface;

typedef std::shared_ptr<IdentInterface> ClassCImplPtr;

class IdentInterface

	

2. {
public:

	

3. virtual ReturnStatus initializeEnrollmentSession(
 const std::string &configurationLocation,
 const std::string &enrollmentDirectory,
 const uint32_t numPersons,
 const uint32_t numImages) = 0;

	

4. virtual ReturnStatus convertMultifaceToEnrollmentTemplates(
 const Multiface &inputFaces,
 std::vector<PersonRep> &templates) = 0;

	

5.	 virtual ReturnStatus finalizeEnrollment (
 const std::string &enrollmentDirectory,
 const std::string &edbName,
 const std::string &edbManifestName) = 0;

	

6. virtual ReturnStatus initializeFeatureExtractionSession(
 const std::string &configurationLocation,
 const std::string &enrollmentDirectory) = 0;

	

7.	 virtual ReturnStatus convertMultifaceToIdentificationTemplates(
 const Multiface &inputFaces,
 std::vector<PersonRep> &templates) = 0;

	

8. virtual ReturnStatus initializeIdentificationSession(
 const std::string &configurationLocation,
 const std::string &enrollmentDirectory);

	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	24	of	36	
	

9. virtual ReturnStatus identifyTemplate(
 const PersonRep &idTemplate,
 const uint32_t candidateListLength,
 std::vector<Candidate> &candidateList);

	

10.	 virtual void setGPU(uint8_t gpuNum); 	
11.	 static ClassCImplPtr getImplementation(); Factory	method	to	return	a	managed	

pointer	to	the	IdentInterface	
object.		This	function	is	implemented	
by	the	submitted	library	and	must	
return	a	managed	pointer	to	the	
IdentInterface	object.		See	section	
3.1.2.1	for	an	example	of	a	typical	
implementation	of	this	method.	

12. }; 	
	528	

3.2.2.2. Initialization	of	the	enrollment	session	529	
Before	any	enrollment	feature	extraction	calls	are	made,	the	NIST	test	harness	will	call	the	initialization	function	of	Table	530	
27.	531	

Table	27	–	Enrollment	initialization		532	

Prototype	 ReturnStatus	initializeEnrollmentSession(
const	std::string	&configurationLocation,	 Input	
const	std::string	&enrollmentDirectory,	 Input	
const	uint32_t	numPersons,	 Input	
const	uint32_t	numImages);	 Input	

Description	
	

This	function	initializes	the	SDK	under	test	and	sets	all	needed	parameters.		This	function	will	be	called	N=1	times	by	
the	NIST	application	immediately	before	any	M	≥	1	calls	to	convertMultifaceToEnrollmentTemplate.					
Caution:	The	implementation	should	tolerate	execution	of	P	>	1	processes	on	the	one	or	more	machines	each	of	which	
may	be	reading	and	writing	to	this	same	enrollment	directory	in	parallel.		File	locking	or	process-specific	temporary	
filenames	would	be	needed	to	safely	write	content	in	the	enrollmentDirectory.	

Input	
Parameters	

configurationLocation	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	
run-time	data	files.	

enrollmentDirectory	 The	directory	will	be	initially	empty,	but	may	have	been	initialized	and	populated	by	
separate	invocations	of	the	enrollment	process.		When	this	function	is	called,	the	SDK	
may	populate	this	folder	in	any	manner	it	sees	fit.			Permissions	will	be	read-write-delete.	

numPersons	 The	number	of	persons	who	will	be	enrolled	0	≤	N	≤	232	-	1		(e.g.	1	million)	
numImages	 The	total	number	of	images	that	will	be	enrolled,	summed	over	all	identities	0	≤	M	≤	232	-	

1	(e.g.	1.8	million)	
Output	
Parameters	

none	 	

Return	Value	 See	Table	18	for	all	valid	return	code	values.	

3.2.2.3. GPU	Index	Specification	533	

For	implementations	using	GPUs,	the	function	of	Table	28	specifies	a	sequential	index	identifying	which	GPU	device	to	534	
use.		This	enables	the	test	software	to	orchestrate	load	balancing	across	multiple	GPUs.	535	

Table	28	–	GPU	index	specification	536	

Prototypes	 void	setGPU	(
uint8_t	gpuNum);	 Input	

Description	 This	function	sets	the	GPU	device	number	to	be	used	by	all	subsequent	implementation	function	calls.		gpuNum	is	
a	zero-based	sequence	value	of	which	GPU	device	to	use.		0	would	mean	the	first	detected	GPU,	1	would	be	the	
second	GPU,	etc.		If	the	implementation	does	not	use	GPUs,	then	this	function	call	should	simply	do	nothing.	

Input	Parameters	 gpuNum	 Index	number	representing	which	GPU	to	use.	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	25	of	36	
	

	 	

3.2.2.4. Enrollment	537	
A	Multiface	is	converted	to	one	or	more	enrollment	templates	(based	on	the	number	of	persons	found	in	the	538	
Multiface)	using	the	function	of	Table	29.	539	

Table	29	–	Enrollment	feature	extraction	540	

Prototypes	 ReturnStatus	convertMultifaceToEnrollmentTemplates(
const	Multiface	&inputFaces,	 Input	
std::vector<PersonRep>	&templates);	 Output	

Description	 This	function	takes	a	Multiface	and	outputs	a	vector	of	PersonRep	objects.	If	the	function	executes	correctly	(i.e.	
returns	a	successful	exit	status),	the	NIST	calling	application	will	store	the	template.		The	NIST	application	will	
concatenate	the	templates	and	pass	the	result	to	the	enrollment	finalization	function.		For	a	Multiface	in	which	no	
persons	appear,	a	valid	output	is	an	empty	vector	(i.e.	size()	==	0).	

If	the	function	gives	a	non-zero	exit	status:	

− the	test	driver	will	ignore	the	output	template	(the	template	may	have	any	size	including	zero)	
− the	event	will	be	counted	as	a	failure	to	enroll.		

	
IMPORTANT:		NIST's	application	writes	the	template	to	disk.		The	implementation	must	not	attempt	writes	to	the	
enrollment	directory	(nor	to	other	resources).		Any	data	needed	during	subsequent	searches	should	be	included	in	the	
template,	or	created	from	the	templates	during	the	enrollment	finalization	function	of	section	3.2.2.5.	

Input	
Parameters	

inputFaces	 An	instance	of	a	Table	9	structure.		Implementations	must	alter	their	behavior	according	to	the	
number	of	images	contained	in	the	structure.	

Output	
Parameters	

templates	 For	each	person	detected	in	the	Multiface,	the	function	shall	identify	the	person’s	estimated	
eye	centers	for	each	images/video	frame	where	the	person’s	eye	coordinates	can	be	calculated.		
The	eye	coordinates	shall	be	captured	in	the	PersonRep.eyeCoordinates	variable,	which	is	a	
vector	of	EyePair	objects.		For	videos,	the	frame	number	from	the	video	of	where	the	eye	
coordinates	were	detected	shall	be	captured	in	the	EyePair.frameNum	variable	for	each	pair	of	
eye	coordinates.		In	the	event	the	eye	centers	cannot	be	calculated	(ie.	the	person	becomes	out	of	
sight	for	a	few	frames	in	the	video),	the	SDK	shall	not	store	an	EyePair	for	those	frames.			

Return	Value	 See	Table	18	for	all	valid	return	code	values.	

3.2.2.5. Finalize	enrollment	541	

After	all	templates	have	been	created,	the	function	of	Table	30	will	be	called.		This	freezes	the	enrollment	data.		After	this	542	
call	the	enrollment	dataset	will	be	forever	read-only.			543	

The	function	allows	the	implementation	to	conduct,	for	example,	statistical	processing	of	the	feature	data,	indexing	and	544	
data	re-organization.		The	function	may	alter	the	file	structure.		It	may	increase	or	decrease	the	size	of	the	stored	data.		545	
No	output	is	expected	from	this	function,	except	a	return	code.			546	

Implementations	shall	not	move	the	input	data.			Implementations	shall	not	point	to	the	input	data.		Implementations	547	
should	not	assume	the	input	data	would	be	readable	after	the	call.		Implementations	must,	at	a	minimum,	copy	the	548	
input	data	or	otherwise	extract	what	is	needed	for	search.	549	

Table	30	–	Enrollment	finalization	550	

Prototypes	 ReturnStatus	finalizeEnrollment	(
const	std::string	&enrollmentDirectory,	 Input	
const	std::string	&edbName,	 Input	
const	std::string	&edbManifestName);	 Input	

Description	 This	function	takes	the	name	of	the	top-level	directory	where	enrollment	database	(EDB)	and	its	manifest	have	been	
stored.			These	are	described	in	section	2.5.		The	enrollment	directory	permissions	will	be	read	+	write.			

The	function	supports	post-enrollment,	developer-optional,	bookkeeping	operations,	including	indexing,	tree-building,	
statistical	processing	and	data	re-ordering	for	fast	in-memory	searching.			The	function	will	generally	be	called	in	a	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	26	of	36	
	

separate	process	after	all	the	enrollment	processes	are	complete.	

This	function	should	be	tolerant	of	being	called	two	or	more	times.		Second	and	third	invocations	should	probably	do	
nothing.	

Input	
Parameters	

enrollmentDirectory	 The	top-level	directory	in	which	enrollment	data	was	placed.	This	variable	allows	an	
implementation	to	locate	any	private	initialization	data	it	elected	to	place	in	the	directory.	

edbName	 The	name	of	a	single	file	containing	concatenated	templates,	i.e.	the	EDB	of	section	2.5.	
While	the	file	will	have	read-write-delete	permission,	the	SDK	should	only	alter	the	file	if	it	
preserves	the	necessary	content,	in	other	files	for	example.	
The	file	may	be	opened	directly.		It	is	not	necessary	to	prepend	a	directory	name.		This	is	a	
NIST-provided	input	–	implementers	shall	not	internally	hard-code	or	assume	any	values.	

edbManifestName	 The	name	of	a	single	file	containing	the	EDB	manifest	of	section	2.5.	
The	file	may	be	opened	directly.		It	is	not	necessary	to	prepend	a	directory	name.		This	is	a	
NIST-provided	input	–	implementers	shall	not	internally	hard-code	or	assume	any	values.	

Output	
Parameters	

None	 	

Return	Value	 See	Table	18	for	all	valid	return	code	values.	

3.2.2.6. Pre-search	feature	extraction	551	

3.2.2.7. Initialization	552	

Before	Multifaces	are	sent	to	the	identification	feature	extraction	function,	the	test	harness	will	call	the	initialization	553	
function	in	Table	31.	554	

Table	31	–	Identification	feature	extraction	initialization		555	

Prototype	 ReturnStatus	initializeFeatureExtractionSession(
const	std::string	&configurationLocation,	 Input	
const	std::string	&enrollmentDirectory);	 Input	

Description	
	

This	function	initializes	the	SDK	under	test	and	sets	all	needed	parameters.		This	function	will	be	called	once	by	the	
NIST	application	immediately	before	any	M	≥	1	calls	to	convertMultifaceToIdentificationTemplate.					
Caution:	The	implementation	should	tolerate	execution	of	P	>	1	processes	on	the	one	or	more	machines	each	of	
which	may	be	reading	from	this	same	enrollment	directory	in	parallel.		
	
The	implementation	has	read-only	access	to	its	prior	enrollment	data.	

Input	Parameters	 configuration_location	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	
run-time	data	files.	

	 enrollment_directory	 The	read-only	top-level	directory	in	which	enrollment	data	was	placed	and	then	
finalized	by	the	implementation.		The	implementation	can	parameterize	subsequent	
template	production	on	the	basis	of	the	enrolled	dataset.	

Output	
Parameters	

none	 	

Return	Value	 See	Table	18	for	all	valid	return	code	values.	

3.2.2.8. Feature	extraction	556	
A	Multiface	is	converted	to	an	atomic	identification	template	using	the	function	of	Table	32.		The	result	may	be	stored	557	
by	NIST,	or	used	immediately.		The	SDK	shall	not	attempt	to	store	any	data.	558	

Table	32	–	Identification	feature	extraction	559	

Prototypes	 ReturnStatus	convertMultifaceToIdentificationTemplates(
const	Multiface	&inputFaces,	 Input	
std::vector<PersonRep>	&templates);	 Output	

Description	 This	function	takes	a	Multiface	as	input	and	populates	a	vector	of	PersonRep	with	the	number	of	persons	
detected	from	the	Multiface.		The	implementation	could	call	vector::push_back	to	insert	into	the	vector.	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	27	of	36	
	

If	the	function	executes	correctly,	it	returns	a	zero	exit	status.	The	NIST	calling	application	may	commit	the	template	to	
permanent	storage,	or	may	keep	it	only	in	memory	(the	implementation	does	not	need	to	know).		If	the	function	
returns	a	non-zero	exit	status,	the	output	template	will	be	not	be	used	in	subsequent	search	operations.	

The	function	shall	not	have	access	to	the	enrollment	data,	nor	shall	it	attempt	access.	
Input	
Parameters	

inputFaces	 One	or	more	faces,	or	a	video	clip.		
	

Output	
Parameters	

templates	 For	each	person	detected	in	the	video,	the	function	shall	create	a	PersonRep	
object,	populate	it	with	a	template	and	eye	coordinates	for	each	image	or	video	
frame	where	eyes	were	detected,	and	add	it	to	the	vector.		

Return	Value	 See	Table	18	for	all	valid	return	code	values.	

3.2.2.9. Initialization	560	

The	function	of	Table	33	will	be	called	once	prior	to	one	or	more	calls	of	the	searching	function	of	Table	34.		The	function	561	
might	set	static	internal	variables	so	that	the	enrollment	database	is	available	to	the	subsequent	identification	searches.	562	

Table	33	–	Identification	initialization	563	

Prototype	 ReturnStatus	initializeIdentificationSession(
const	std::string	&configurationLocation,	 Input	
const	std::string	&enrollmentDirectory);	 Input	

Description	 This	function	reads	whatever	content	is	present	in	the	enrollmentDirectory,	for	example	a	manifest	placed	
there	by	the	finalizeEnrollment	function.	

Input	Parameters	 configurationLocation	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	
run-time	data	files.	

enrollmentDirectory	 The	read-only	top-level	directory	in	which	enrollment	data	was	placed.	
Return	Value	 See	Table	18	for	all	valid	return	code	values.	

3.2.2.10. Search	564	
The	function	of	Table	34	compares	a	proprietary	identification	template	against	the	enrollment	data	and	returns	a	565	
candidate	list.	566	

Table	34	–	Identification	search	567	

Prototype	 ReturnStatus	identifyTemplate(
const	PersonRep	&idTemplate,	 Input	
const	uint32_t	candidateListLength,	 Input	
std::vector<Candidate>	&candidateList);	 Output	

Description	
	

This	function	searches	an	identification	template	against	the	enrollment	set,	and	outputs	a	vector	containing	
candidateListLength	Candidates.		Each	candidate	shall	be	populated	by	the	implementation	and	added	to	
candidateList.		Note	that	candidateList	will	be	an	empty	vector	when	passed	into	this	function.		The	candidates	
shall	appear	in	descending	order	of	similarity	score	-	i.e.	most	similar	entries	appear	first.	

Input	Parameters	 idTemplate	 A	template	from	convertMultifaceToIdentificationTemplates()	-	
If	the	value	returned	by	that	function	was	non-zero	the	contents	of	idTemplate	
will	not	be	used	and	this	function	(i.e.	identifyTemplate)	will	not	be	called.	

candidateListLength	 The	number	of	candidates	the	search	should	return.	
Output	
Parameters	

candidateList	 A	vector	containing	candidateListLength	objects	of	candidates.	The	
datatype	is	defined	in	Table	17	.		Each	candidate	shall	be	populated	by	the	
implementation.		The	candidates	shall	appear	in	descending	order	of	similarity	
score	-	i.e.	most	similar	entries	appear	first.	

Return	Value	 See	Table	18	for	all	valid	return	code	values.	

NOTE:	 Ordinarily	the	calling	application	will	set	the	input	candidate	list	length	to	operationally	typical	values,	say	0	≤	L		≤	568	
200,	and	L	<<	N.		However,	there	is	interest	in	the	presence	of	mates	much	further	down	the	candidate	list.		We	may	569	
therefore	extend	the	candidate	list	length	such	that	L	approaches	N.		We	may	measure	the	dependence	of	search	570	
duration	on	L.	 	571	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	28	of	36	
	

3.3. Face	Detection	572	

3.3.1. API	573	

3.3.1.1. Interface	574	

The	Class	D	detection	software	under	test	must	implement	the	interface	DetectInterface	by	subclassing	this	class	575	
and	implementing	each	method	specified	therein.		576	

	 C++	code	fragment		 Remarks	
1. class DetectInterface;

typedef std::shared_ptr<DetectInterface> ClassDImplPtr;

class DetectInterface

	

2. {
public:

	

3. virtual ReturnStatus initializeDetection(
 const std::string &configurationLocation) = 0;

	

4. virtual ReturnStatus detectFaces(
 const Image &inputImage,
 std::vector<BoundingBox> &boundingBoxes) = 0;

	

5.	 virtual void setGPU(uint8_t gpuNum); 	
6.	 static ClassDImplPtr getImplementation(); Factory	method	to	return	a	managed	pointer	to	the	

DetectInterface	object.		This	function	is	
implemented	by	the	submitted	library	and	must	return	a	
managed	pointer	to	the	DetectInterface	object.		See	
section	3.1.2.1	for	an	example	of	a	typical	
implementation	of	this	method.	

7. }; 	

3.3.1.2. Initialization	577	

Before	any	calls	to	detectFaces	are	made,	the	NIST	test	harness	will	make	a	call	to	the	initialization	of	the	function	in	578	
Table	35.	579	

Table	35	–	SDK	initialization		580	

Prototype	 ReturnStatus	initializeDetection(
const	std::string	&configurationLocation);	 Input	

Description	
	

This	function	initializes	the	SDK	under	test.		It	will	be	called	by	the	NIST	application	before	any	call	to	the	function	
detectFaces.		The	SDK	under	test	should	set	all	parameters.		

Input	Parameters	 configurationLocation	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	run-
time	data.		The	name	of	this	directory	is	assigned	by	NIST,	not	hardwired	by	the	provider.		
The	names	of	the	files	in	this	directory	are	hardwired	in	the	SDK	and	are	unrestricted.	

Output	
Parameters	

none	 	

Return	Value	 See	Table	18	for	all	valid	return	code	values.	

3.3.1.3. GPU	Index	Specification	581	

For	implementations	using	GPUs,	the	function	of	Table	36	specifies	a	sequential	index	for	which	GPU	device	to	execute	582	
on.		This	enables	the	test	software	to	orchestrate	load	balancing	across	multiple	GPUs.	583	

Table	36	–	GPU	index	specification	584	

Prototypes	 void	setGPU	(
uint8_t	gpuNum);	 Input	

Description	 This	function	sets	the	GPU	device	number	to	be	used	by	all	subsequent	implementation	function	calls.		gpuNum	is	
a	zero-based	sequence	value	of	which	GPU	device	to	use.		0	would	mean	the	first	detected	GPU,	1	would	be	the	
second	GPU,	etc.		If	the	implementation	does	not	use	GPUs,	then	this	function	call	should	simply	do	nothing.	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	29	of	36	
	

Input	Parameters	 gpuNum	 Index	number	representing	which	GPU	to	use.	

3.3.1.4. Face	detection	585	
The	function	of	Table	37	supports	the	detection	of	faces	in	an	image.		An	image	may	contain	one	or	more	faces.	586	

Table	37	–	Face	detection	587	

Prototypes	 ReturnStatus	detectFaces(
const	Image	&inputImage,	 Input	
std::vector<BoundingBox>	&boundingBoxes);	 Output	

Description	 This	function	takes	an	Image	as	input,	and	populates	a	vector	of	BoundingBox	with	the	number	of	faces	detected	
from	the	input	image.		The	implementation	could	call	vector::push_back	to	insert	into	the	vector.	

Input	
Parameters	

inputImage	 An	instance	of	a	struct	representing	a	single	image	from	Table	8.	

Output	
Parameters	

boundingBoxes	 For	each	face	detected	in	the	image,	the	function	shall	create	a	BoundingBox	(see	Table	14),	
populate	it	with	a	confidence	score,	the	x,	y,	width,	height	of	the	bounding	box,	and	add	it	to	
the	vector.	

Return	Value	 See	Table	18	for	all	valid	return	code	values.	

	 	588	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	30	of	36	
	

3.4. Clustering	589	

3.4.1. Definitions	590	
Clustering	is	the	act	of	grouping	imagery	of	the	same	individuals.		If	a	large	image	collection	has	N	images	in	which	P	≥	0	591	
subjects	appear,	an	implementation	should	return	N	lists.		The	n-th	list	contains	zero	or	more	hypotheses	about	who	592	
appears	in	the	n-th	input	image.		Each	hypothesis	is	comprised	of:	a	bounding	box;	an	integer	subject	identifier;	and	a	593	
similarity	score.		A	similarity	is	a	measure	of	confidence	that	a	hypothesized	identity	truly	shares	the	same	face	as	others	594	
in	that	cluster.		Subject	identifiers	are	labels	assigned	by	the	algorithm.	595	

Clustering	will,	in	general,	produce	detection	errors	(where	a	person	is	not	found	at	all),	and	both	false	positive	and	596	
negative	associations	where,	respectively,	multiple	persons	appear	in	one	cluster,	one	person	exists	in	several	clusters.		A	597	
single	image	can	contain	one	or	more	faces	in	it.			598	

3.4.2. API	599	

3.4.2.1. Interface	600	

The	Class	G	clustering	software	under	test	must	implement	the	interface	ClusterInterface	by	subclassing	this	class	601	
and	implementing	each	method	specified	therein.		See		602	

	 C++	code	fragment		 Remarks	
1. class ClusterInterface;

typedef std::shared_ptr<ClusterInterface> ClassGImplPtr;

class ClusterInterface

	

2. {
public:

	

3. virtual ReturnStatus initializeClustering(
 const std::string &configurationLocation) = 0;

	

4. virtual ReturnStatus clusterIdentities(
 const std::vector<Image> &inputFaces,
 std::vector<ClusterMembersInImage> &assignments) = 0;

	

5.	 virtual void setGPU(uint8_t gpuNum); 	
6.	 static ClassGImplPtr getImplementation(); Factory	method	to	return	a	managed	pointer	to	

the	ClusterInterface object.		This	function	is	
implemented	by	the	submitted	library	and	must	
return	a	managed	pointer	to	the	
ClusterInterface object.		See	section	3.1.2.1	
for	an	example	of	a	typical	implementation	of	
this	method.	

7. }; 	
	603	

3.4.2.2. Initialization	604	
Before	any	calls	to	clusterIdentities	are	made,	the	NIST	test	harness	will	make	a	call	to	the	initialization	of	the	605	
function	in	Table	38.	606	

Table	38	–	SDK	initialization		607	

Prototype	 ReturnStatus	initializeClustering(
const	std::string	&configurationLocation);	 Input	

Description	
	

This	function	initializes	the	SDK	under	test.		It	will	be	called	by	the	NIST	application	before	any	call	to	the	function	
clusterIdentities.		The	SDK	under	test	should	set	all	parameters.		

Input	Parameters	 configurationLocation	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	
run-time	data	files.		The	name	of	this	directory	is	assigned	by	NIST.		It	is	not	hardwired	
by	the	provider.		The	names	of	the	files	in	this	directory	are	hardwired	in	the	SDK	and	
are	unrestricted.	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	31	of	36	
	

Output	
Parameters	

none	 	

Return	Value	 See	Table	18	for	all	valid	return	code	values.	

3.4.2.3. GPU	Index	Specification	608	
For	implementations	using	GPUs,	the	function	of	Table	39	specifies	a	sequential	index	for	which	GPU	device	to	execute	609	
on.		This	enables	the	test	software	to	orchestrate	load	balancing	across	multiple	GPUs.	610	

Table	39	–	GPU	index	specification	611	

Prototypes	 void	setGPU	(
uint8_t	gpuNum);	 Input	

Description	 This	function	sets	the	GPU	device	number	to	be	used	by	all	subsequent	implementation	function	calls.		gpuNum	is	
a	zero-based	sequence	value	of	which	GPU	device	to	use.		0	would	mean	the	first	detected	GPU,	1	would	be	the	
second	GPU,	etc.		If	the	implementation	does	not	use	GPUs,	then	this	function	call	should	simply	do	nothing.	

Input	Parameters	 gpuNum	 Index	number	representing	which	GPU	to	use.	

3.4.2.4. Cluster	Identities	612	
The	implementation	shall	implement	the	function	given	in	Table	40.	613	

Table	40	–	Clustering	614	

Prototype	 ReturnStatus	clusterIdentities(
const		std::vector<Image>	&inputFaces,	 Input	
const	uint32_t	numClusters,	 Input	
std::vector<ClusterMembersInImage>	&assignments	 Output	

Description	
	

This	function	takes	a	collection	of	images	and	outputs	cluster	hypotheses.				This	function	is	not	mediated	by	a	
separate	template	generation	step:	All	detection,	template	generation	and	matching	occurs	internal	to	this	function.	

NIST	will	pre-allocate	the	assignments	vector	to	have	size	equal	to	input_faces.size().		It	is	up	to	the	
implementations	to	populate	the	assignments vector	based	on	the	number	of	faces	found	in	the	images.		

For	each	input	image,	inputFaces[i],	the	implementation	should	assign	hypothesized	cluster	assignment(s)	in	
assignments[i].		There	may	be	zero	or	more	persons	in	each	image.		If	this	image	contained	three	faces,	then	
assignments[i].members.size()	should	be	3.	

When	greater	than	0,	the	value	numClusters	represents	an	upper	bound	on	the	number	of	individuals	that	might	
be	present	in	the	entire	collection.		This	value	assumes	that	an	investigator	with	domain-specific	knowledge	would	
be	able	to	estimate	the	number	of	subjects	present,	at	least	to	an	order-of-magnitude.	NIST	will	set	numClusters	
to	10,	100,	1000,	10000,	100000.		The	actual	number	of	individuals	will	be	less	than	this.	

NIST	will	also	set	numClusters	to	-1	which	represents	the	case	where	the	number	of	subjects	is	truly	unknown.	

Input	Parameters	 inputFaces	 N	Images	from	P	≥	0	subjects.		There	are	ni	≥	1	images	from	individual	i.	
numClusters	 Upper	bound	on	the	number	of	clusters.		-1	represents	an	unset	value.	

Output	
Parameters	

assignments	 N	lists	of	cluster	assignments.	

Return	Value	 See	Table	18	for	all	valid	return	code	values.	
	615	
	 	616	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	32	of	36	
	

4. References	617	

FRVT	2002	 Face	Recognition	Vendor	Test	2002:	Evaluation	Report,	NIST	Interagency	Report	6965,	P.	Jonathon	Phillips,	Patrick	Grother,	
Ross	J.	Micheals,	Duane	M.	Blackburn,	Elham	Tabassi,	Mike	Bone	

FRVT	2002b	 Face	Recognition	Vendor	Test	2002:	Supplemental	Report,	NIST	Interagency	Report	7083,	Patrick	Grother	

FRVT	2012	 Patrick	Grother	and	Mei	Ngan,	Face	Recognition	Vendor	Test	(FRVT)	Performance	of	Face	Identification	Algorithms,	NIST	
Interagency	Report	8009,	May	26,	2014.	

AN27	 NIST	Special	Publication	500-271:		American	National	Standard	for	Information	Systems	—	Data	Format	for	the	Interchange	
of	Fingerprint,	Facial,	&	Other	Biometric	Information	–	Part	1.	(ANSI/NIST	ITL	1-2007).		Approved	April	20,	2007.	

IJBA	 See	for	example	the	images	here:	http://www.nist.gov/itl/iad/ig/facechallenges.cfm		

As	documented	here:		Klare	et	al.	Pushing	the	Frontiers	of	Unconstrained	Face	Detection	and	Recognition:	IARPA	Janus	
Benchmark	A,	CVPR,	June	2015.	

MEDS	 NIST	Special	Database	32,	Volume	1	and	Volume	2	are	available	at:	http://www.nist.gov/itl/iad/ig/sd32.cfm.		MEDS-II	is	an	
update	to	MEDS-I	and	was	published	in	February	2011.		Note	that	NIST	does	not	provide	"training"	data	per	se	-	this	differs	
from	the	paradigm	often	used	in	academic	research	where	a	model	is	trained,	tested	and	validated.	Instead	CHEXIA-FACE	
follows	operational	reality:	software	is	typically	shipped	"as	is"	with	a	fixed	internal	representation	that	is	designed	to	be	
usable	"off	the	shelf"	without	training	and	with	only	minimal	configuration.	

MBE	 P.	Grother,	G	.W.	Quinn,	and	P.	J.	Phillips,	Multiple-Biometric	Evaluation	(MBE)	2010,	Report	on	the	Evaluation	of	2D	Still	
Image	Face	Recognition	Algorithms,	NIST	Interagency	Report	7709,	Released	June	22,	2010.	Revised	August	23,	2010.			

http://face.nist.gov/mbe			

	618	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	33	of	36	
	

Annex A 619	

Submission of Implementations to the CHEXIA-FACE 620	

A.1 Submission of implementations to NIST 621	

NIST	requires	that	all	software,	data	and	configuration	files	submitted	by	the	participants	be	signed	and	encrypted.		622	
Signing	is	done	with	the	participant's	private	key,	and	encryption	is	done	with	the	NIST	public	key.		The	detailed	623	
commands	for	signing	and	encrypting	are	given	here:	http://www.nist.gov/itl/iad/ig/encrypt.cfm	624	

NIST	will	validate	all	submitted	materials	using	the	participant's	public	key,	and	the	authenticity	of	that	key	will	be	verified	625	
using	the	key	fingerprint.		This	fingerprint	must	be	submitted	to	NIST	by	writing	it	on	the	signed	participation	agreement.	626	

By	encrypting	the	submissions,	we	ensure	privacy;	by	signing	the	submission,	we	ensure	authenticity	(the	software	627	
actually	belongs	to	the	submitter).		NIST	will	reject	any	submission	that	is	not	signed	and	encrypted.		NIST	accepts	no	628	
responsibility	for	anything	that	is	transmitted	to	NIST	that	is	not	signed	and	encrypted	with	the	NIST	public	key.	629	

A.2 How to participate 630	

Those	wishing	to	participate	in	CHEXIA-FACE	testing	must	do	all	of	the	following,	on	the	schedule	listed	on	Page	2.	631	

― IMPORTANT:	Follow	the	instructions	for	cryptographic	protection	of	your	SDK	and	data	here.	632	
http://www.nist.gov/itl/iad/ig/encrypt.cfm				633	

― Send	a	signed	and	fully	completed	copy	of	the	Application	to	Participate	in	the	Child	Exploitation	Image	Analytics	–	634	
Face	Recognition	Evaluation	(CHEXIA-FACE).	This	is	available	at	http://www.nist.gov/itl/iad/ig/chexia-face.cfm.		This	635	
must	identify,	and	include	signatures	from,	the	Responsible	Parties	as	defined	in	the	application.	The	properly	signed	636	
CHEXIA-FACE	Application	to	Participate	shall	be	sent	to	NIST	as	a	PDF.		637	

― Provide	an	SDK	(Software	Development	Kit)	library	which	complies	with	the	API	(Application	Programmer	Interface)	638	
specified	in	this	document.	639	

• Encrypted	data	and	SDKs	below	20MB	can	be	emailed	to	NIST	at	chexia.face@nist.gov.	640	

• Encrypted	data	and	SDKS	above	20MB	shall	be	641	

EITHER	642	

§ Split	into	sections	AFTER	the	encryption	step.		Use	the	unix	"split"	commands	to	make	9MB	chunks,	643	
and	then	rename	to	include	the	filename	extension	need	for	passage	through	the	NIST	firewall.	644	

§ you% split –a 3 –d –b 9000000 libCHEXIAFACE_enron_A_02.tgz.gpg 645	
§ you% ls -1 x??? | xargs –iQ mv Q libCHEXIAFACE6_enron_A_02_Q.tgz.gpg 646	

§ Email	each	part	in	a	separate	email.	Upon	receipt	NIST	will 647	
§ nist% cat chexiaface_enron_A02_*.tgz.gpg > 648	

libCHEXIAFACE_enron_A_02.tgz.gpg 649	

OR	650	

§ Made	available	as	a	file.zip.gpg	or	file.zip.asc	download	from	a	generic	http	webserver6,	651	

OR	652	

§ Mailed	as	a	file.zip.gpg	or	file.zip.asc	on	CD	/	DVD	to	NIST	at	this	address:	653	

CHEXIA-FACE	Test	Liaison	(A203)	
100	Bureau	Drive	
A203/Tech225/Stop	8940	
NIST	
Gaithersburg,	MD	20899-8940	
USA	

In	cases	where	a	courier	needs	a	phone	number,	please	
use	NIST	shipping	and	handling	on:	301	--	975	--	6296.	
	

																																																																				
6	NIST	will	not	register,	or	establish	any	kind	of	membership,	on	the	provided	website.	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	34	of	36	
	

A.3 Implementation validation 654	

Registered	Participants	will	be	provided	with	a	small	validation	dataset	and	test	program	available	on	the	website		655	

http://www.nist.gov/itl/iad/ig/chexia-face.cfm	shortly	after	the	final	evaluation	plan	is	released.	656	

The	validation	test	programs	shall	be	compiled	by	the	provider.		The	output	of	these	programs	shall	be	submitted	to	NIST.	657	

Prior	to	submission	of	the	SDK	and	validation	data,	the	Participant	must	verify	that	their	software	executes	on	the	658	
validation	images,	and	produces	correct	similarity	scores	and	templates.	659	

Software	submitted	shall	implement	the	CHEXIA-FACE	API	Specification	as	detailed	in	the	body	of	this	document.	660	

Upon	receipt	of	the	SDK	and	validation	output,	NIST	will	attempt	to	reproduce	the	same	output	by	executing	the	SDK	on	661	
the	validation	imagery,	using	a	NIST	computer.		In	the	event	of	disagreement	in	the	output,	or	other	difficulties,	the	662	
Participant	will	be	notified.	663	
	 	664	

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	35	of	36	
	

Annex B 665	

Effect of Age on Face Identification Accuracy 666	

For	the	most	accurate	algorithm	provided	to	NIST’s	FRVT	evaluation	in	late	2013	the	Figure	below	shows	the	one-to-many	667	
identification	accuracy	for	subjects	from	particular	age	groups.		The	images	are	visa	images.		We	enrolled	a	first	image	668	
from	each	of	N	=	19972	individuals.	Thereafter,	we	executed	one	mated	search	from	those	individuals	to	allow	estimation	669	
of	False	Negative	Identification	Rate	(FNIR,	aka	“miss	rate”).		We	also	executed	203,082	non-mated	searches	to	allow	670	
computation	of	the	False	Positive	Identification	Rate	(FPIR,	aka	“false	alarm	rate”).	671	

Results	for	40	algorithms	appear	in	Annex	A	of	NIST	Interagency	Report	80097.			The	discussion	from	that	report	is:	672	

― Recognition	is	progressively	easier	with	advancing	age:	All	algorithms	exhibit	a	strong	dependence	of	FNIR	on	age.	This	effect	is	673	
very	large,	spanning	a	factor	of	ten	from	infant	to	senior,	and	a	factor	of	around	five	from	teen	to	senior.	Miss	rates	for	older	674	
persons	are	very	low:	at	a	fixed	FPIR	of	0.005,	the	most	accurate	algorithm,	E30C,	gives	FNIR	of	0.008	for	persons	over	age	55,	675	
0.027	for	young	20-somethings,	and	0.057	for	teenagers.	For	younger	persons,	the	miss	rates	climb	rapidly	to	0.29	for	pre-teens,	676	
0.4	for	kids,	to	0.7	for	babies.	This	progression	is	common	to	all	algorithms.		677	

― Young	children	are	more	difficult	to	recognize:	Identification	miss	rates	(FNIR)	ascend	rapidly	for	pre-teens,	kids	and	the	youngest	678	
individuals.	For	the	baby	group,	0	to	about	3	years	old,	identification	fails	more	often	that	it	succeeds,	i.e.	FNIR	is	above	50%.	679	
While	the	sample	size	is	small	(57	subjects),	error	rates	are	so	high	that	the	result	remains	significant.	This	result	applies	for	image	680	
pairs	collected	on	average	1.6	years	apart	(Table	13)	and	will	be	in	considerable	part	due	to	the	craniofacial	shape	change	681	
associated	with	rapid	growth.	The	extent	to	which	smooth	“feature-less”	skin	texture	affects	FNIR	is	unknown.	Likewise	the	pose	682	
variations	inherent	in	photographing	children	have	not	been	quantified.		683	

― Young	children	are	more	difficult	to	discriminate:	All	of	the	algorithms	exhibit	higher	false	positive	identification	rates	for	younger	684	
subjects.	The	grey	lines	in	Figure	11,	which	link	points	of	equal	threshold,	slope	upwards	to	the	right,	indicating	simultaneously	685	
that	younger	subjects	are	less	easy	to	recognize	as	themselves	but	also	less	easy	to	tell	apart.	This	indicates	that	younger	686	
individuals	are	more	difficult	to	discriminate	from	other	individuals.	687	

	688	

	689	

																																																																				
7	http://biometrics.nist.gov/cs_links/face/frvt/frvt2013/NIST_8009.pdf	

False Positive Identification Rate (FPIR), E30C

Fa
ls

e
N

eg
at

ive
 Id

en
tif

ic
at

io
n

R
at

e
(F

N
IR

),
E3

0C

0.001

0.002

0.005

0.01

0.02

0.05

 0.1

 0.2

 0.5

0.001
0.001 0.003 0.01 0.03 0.1 0.3 1

●

●

●

●

●

●

●

0.5083
●

●

●

●

●

●

●

0.5117

●

●

●

●

●

●

●

0.515
●

●

●

●

●

●

●

 0.52

●

●

●

●

●

●

●

0.5232

●

●

●

●

●

●

●

0.5264

●

●

●

●

●

●

●

0.5295

baby
kid
pre
teen
young
parents
older

CHEXIA-FACE	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	36	of	36	
	

	690	

